The nth roots of unity - class-XII
Description: the nth roots of unity | |
Number of Questions: 40 | |
Created by: Tanuja Atwal | |
Tags: complex numbers maths |
If $1,\alpha, \alpha^2,.....,\alpha^{n - 1}$ be the $n^{th}$ roots of unity, then $(1-\alpha)(1-\alpha^2).....(1-\alpha^{n-1}) $
Find the number of values of complex numbers $\omega$ satisfying the system of equations ${ z }^{ 3 }=-{ \left( \overline { \omega } \right) }^{ 7 }$ and ${ z }^{ 5 }.{ \omega }^{ 11 }=1$
For positive integers ${ n } _{ 1 },{ n } _{ 2 }$ the value of the expression; ${ (1+i) }^{ { n } _{ 1 } }+{ (1+i) }^{ { n } _{ 1 } }+{ (1+i) }^{ { n } _{ 2 } }+{ (1+i) }^{ { n } _{ 2 } }$, where $i=\sqrt { -1 } $, is a real number if :
The value of $\sum _{ n=1 }^{ 10 }{ \left( sin\frac { 2n\pi }{ 11 } -icos\frac { 2n\pi }{ 11 } \right) } $
The value of the expression $1+(2-\omega )+(2-{ \omega }^{ 2 })+2+(3-\omega )+(3-{ \omega }^{ 2 })+..........+(n-1)(n-\omega )(n-{ \omega }^{ 2 })$ where $\omega $ is an imaginary cube root of unity is-
If 1,${ a } _{ 1 }{ a } _{ 2,........, }{ a } _{ n-1 }$ are the ${ n }^{ th }$ roots of unity, then $\left( 1-{ a } _{ 1 } \right) \left( 1-{ a } _{ 2 } \right) ....\left( 1-{ a } _{ n-1 } \right) $ is equal to
Let the four roots of unity be $z _1, z _2, z _3$, and $z _4$, respectively.
Statement 1: $z _1^2+z _2^2+z _3^2+z _4^2=0$
Statement 2: $z _1+z _2+z _3+z _4=0$.
If $\alpha _1, \alpha _2, \alpha _3, \alpha _4$ be the roots of $x^5 - 1 = 0$ then find $\displaystyle \frac{\omega - \alpha _1}{\omega^2 - \alpha _1} \cdot \frac{\omega - \alpha _2}{\omega^2 - \alpha _2} \cdot \frac{\omega - \alpha _3}{\omega^2 - \alpha _3} \cdot \frac{\omega - \alpha _4}{\omega^2 - \alpha _4} $
If $\alpha$ is the n$^{th}$ root of unity, then $1+2\alpha+3\alpha^2+.... $ to $n$ terms equal to
If $\displaystyle\ \alpha$ is nonreal and $\displaystyle\ \alpha=\sqrt[5]{1}$ then the value of $\displaystyle\ 2^{|1+\alpha+\alpha^{2}+\alpha^{3} +\alpha^{-1}|}$ is equal to
If n is an odd positive integer and $ I,\alpha _{1},\alpha _{2},....\alpha _{n-1}$ are the $n,n^{th}$ roots of unity, then $\left ( 3+\alpha ^{1} \right )\left ( 3+\alpha ^{2} \right )....\left ( 3+\alpha ^{n-1} \right )$ equals
$(1-\omega +\omega^{2})(1-\omega^{2}+\omega^{4})(1-\omega^{4}+\omega^{8})......$to 2n factors =
If $\alpha$ is the $n^{th}$ root of unity, then $1+2\alpha+3\alpha^{2}+...$ to $n$ terms is equal to
if $\displaystyle\ z _{\gamma }=\cos \frac{2\gamma \pi}{5}+i\sin \frac{2\gamma \pi}{5}=0$, $\displaystyle\ \gamma = 0,1,2,3,4.....$ then $\displaystyle\ z _{1}z _{2}z _{3}z _{4}z _{5}$ is equal to
If the fourth roots of unity are $\displaystyle\ z _{1},z _{2},z _{3},z _{4}$ then $\displaystyle\ z _{1}^{2}+z _{2}^{2}+z _{3}^{2}+z _{4}^{2}$ is equal to
If $a = cos \dfrac{2\pi}{7}+i sin\dfrac{2\pi}{7}$, then find the quadratic equation whose roots are $a = a + a^2 + a^4$ and $\beta = a^3 + a^5 + a^6$.
If $\displaystyle z=\cos \frac{8\pi }{11}+i\sin\frac{8\pi }{11},$ then Real $\displaystyle \left ( z+z^{2}+z^{3}+z^{4}+z^{5} \right )$ is
If $\displaystyle \omega $ is fifth root of unity, then $\displaystyle \log _2 \mid 1+\omega +\omega ^{2}+\omega ^{3}-\omega ^{-1}\mid $ is equal to
If $w$ be complex $n^{th}$ root of unity and $r$ is an integer not divisible by $n$, then the sum of the $r$th powers of the nth roots of unity is
If $1,\alpha,\alpha^ 2......\alpha^{n}$ are the $n^{th}$ roots of unity then $^nC _1+ ^nC _2.\alpha + ^nC _3.\alpha^2 ........+^nC _n.\alpha^{n}$ is equal to
If $\alpha $ is a non-real root of $x^6=1$, then $\displaystyle \frac{\alpha ^5+\alpha ^3+\alpha +1}{\alpha ^2+1}=$
lf $\alpha$ be the $n^{th}$ root of unity then the sum of the series $1+2\alpha+3\alpha^{2}+\ldots.+n\alpha^{n-1}$ equals?
If $(2 + i \sqrt 3)$ is a root of the equation $x^2 + px + q = 0$, where p and q are real, then (p, q) equals to
In the multiplicative group of $n^{th}$ roots of unity the inverse of ${ \omega }^{ k },\left( k<n \right) $ is
The 4th roots of unity in the argand plane form a
If $\omega, \omega^2, \omega^3, ........ \omega^{n - 1}$ are nth roots of unity then $(1- \omega) (1- \omega^2) ....... (1 - \omega^{n -1})$ equals:
Which of the following is incorrect regarding $n^{th}$ roots of unity?
If $2 + i$ and $\sqrt {5} - 2i$ are the roots of the equation $(x^{2} + ax + b)(x^{2} + cx + d) = 0$, where $a, b, c, d$ are real constants, then product of all roots of the equation is
$1 , z _1, z _2, z _3, ..., z _{n-1}$ are the $n$th roots of unity, then the value of $\displaystyle\frac{1}{(3-z _1)} +\displaystyle\frac{1}{(3-z _2)} + ... +\displaystyle\frac{1}{(3-z _{n-1})}$ is equal to
If $1,\omega,\omega^{2},...,\omega^{n-1}$ are $n^{th}$ roots of unity, then the value of $(5-\omega)(5-\omega^{2})...(5-\omega^{n-1})=$
Value of $\displaystyle sin \frac{\pi}{2n + 1} sin \frac{2 \pi}{2n + 1} sin \frac{3 \pi}{2n + 1} ..... sin \frac{n\pi}{2n + 1}$.
If $ 1,\alpha ,\alpha ^{2} .....\alpha ^{n-1}$ are n roots of unity then ,$1.\alpha .\alpha ^{2}....\alpha ^{n-1}$ equals
If $\displaystyle \alpha = \cos\frac{8\pi}{11}+i\sin\frac{8\pi }{11}$ then $\displaystyle Re(\alpha +\alpha^{2}+\alpha^{3}+\alpha^{4}+\alpha^{5})$ equals
If $\displaystyle \alpha $ be the $\displaystyle n^{th} $ root of unity then the sum of the series
$\displaystyle 1+2\alpha+3\alpha^{2}+...n\alpha ^{n-1}$ equals.
State true or false:
If $r$ is non-real and $r=\sqrt [ 5 ]{ 1 } $, then the value of $ { 2 }^{ \left| 1+r+{ r }^{ 2 }+{ r }^{ -2 }-{ r }^{ -1 } \right| }$ is equal to
If $\displaystyle \alpha _{1}, \alpha _{2}, \cdots \alpha _{100}$ are all the 100th roots of unity, then $\displaystyle \sum \sum \left ( \alpha _{i}\alpha _{j} \right )^{5}$ is $\displaystyle 1\leq i< j\leq 100$
The value of $\displaystyle \sum _{k= 1}^{6}\left ( \sin \frac{2\pi k}{7}-i\cos \frac{2\pi k}{7} \right )$ is
Simplify the expressions of the sums