0

The nth roots of unity - class-XII

Description: the nth roots of unity
Number of Questions: 40
Created by:
Tags: complex numbers maths
Attempted 0/39 Correct 0 Score 0

If $1,\alpha, \alpha^2,.....,\alpha^{n - 1}$ be the $n^{th}$ roots of unity, then $(1-\alpha)(1-\alpha^2).....(1-\alpha^{n-1}) $

  1. $3$

  2. $0$

  3. $n$

  4. $1$


Correct Option: A
Explanation:
Basically $1,a^1,a^2......a^{n-1}$ all these are the roots of this equation $x^3 – 1 =0$
So we can write
$x^3 -1= (x-1)(x-a _1)(x-a _2).....(x-a _{n-1})$

$\dfrac{x^3 -1}{(x-1)}= (x-a^1)(x-a^2).....(x-a^{n-1})$

$x^2 + x +1= (x-a^1)(x-a^2).....(x-a^{n-1})$

Put $x=1$ on both the sides now

Ans $=3$

Find the number of values of complex numbers $\omega$ satisfying the system of equations ${ z }^{ 3 }=-{ \left( \overline { \omega  }  \right)  }^{ 7 }$ and ${ z }^{ 5 }.{ \omega  }^{ 11 }=1$

  1. $2$

  2. $4$

  3. $6$

  4. $8$


Correct Option: A

For positive integers ${ n } _{ 1 },{ n } _{ 2 }$ the value of the expression; ${ (1+i) }^{ { n } _{ 1 } }+{ (1+i) }^{ { n } _{ 1 } }+{ (1+i) }^{ { n } _{ 2 } }+{ (1+i) }^{ { n } _{ 2 } }$, where $i=\sqrt { -1 } $, is a real number if :

  1. ${ n } _{ 1 }={ n } _{ 2 }+1$

  2. ${ n } _{ 1 }={ n } _{ 2 }-1$

  3. ${ n } _{ 1 }={ n } _{ 2 }$

  4. ${ n } _{ 1 }>0,{ n } _{ 2 }>0$


Correct Option: A

The value of $\sum _{ n=1 }^{ 10 }{ \left( sin\frac { 2n\pi  }{ 11 } -icos\frac { 2n\pi  }{ 11 }  \right)  } $

  1. $i$

  2. $-i$

  3. $0$

  4. none of these


Correct Option: A

The value of the expression $1+(2-\omega )+(2-{ \omega  }^{ 2 })+2+(3-\omega )+(3-{ \omega  }^{ 2 })+..........+(n-1)(n-\omega )(n-{ \omega  }^{ 2 })$ where $\omega $ is an imaginary cube root of unity is-

  1. ${ (\frac { n(n+1) }{ 2 } ) }^{ 2 }$

  2. ${ (\frac { n(n+1) }{ 2 } ) }^{ 2 }-n$

  3. ${ (\frac { n(n+1) }{ 2 } ) }^{ 2 }+n$

  4. None of above


Correct Option: A

If 1,${ a } _{ 1 }{ a } _{ 2,........, }{ a } _{ n-1 }$ are the ${ n }^{ th }$ roots of unity, then $\left( 1-{ a } _{ 1 } \right) \left( 1-{ a } _{ 2 } \right) ....\left( 1-{ a } _{ n-1 } \right) $ is equal to

  1. n

  2. 0

  3. 1

  4. none of these


Correct Option: A

Let the four roots of unity be $z _1, z _2, z _3$, and $z _4$, respectively.
Statement 1: $z _1^2+z _2^2+z _3^2+z _4^2=0$
Statement 2: $z _1+z _2+z _3+z _4=0$.

  1. Both the statements are true, and Statement 2 is the correct explanation for Statement 1.

  2. Both the statements are true, but Statement 2 is not the correct explanation for Statement 1.

  3. Statement 1 is true and Statement 2 is false.

  4. Statement 1 is false and Statement 2 is true.


Correct Option: B
Explanation:

$x^{4}=1$
$x^{2}=\pm1$
$x^{2}=1$ and $x^{2}=-1$
$x=\pm1$ and $x=\pm i$
Hence the four roots are
$1,-1,i,-i$.
Now
$z _{1}=1=-z _{2}$
$z _{3}=i=-z _{4}$
Hence
$z _{1}^{2}+z _{2}^{2}+z _{3}^{2}+z _{4}^{2}$
$=1+1+(i)^{2}+(-i)^{2}$
$=2-2$
$=0$ ...(i)
And also
$z _{1}+z _{2}+z _{3}+z _{4}$
$=1-1+i-i$
$=0$ ...(ii)
Both the statements are true, but Statement 2 is not the correct explanation for Statement 1.

If $\alpha _1, \alpha _2, \alpha _3, \alpha _4$ be the roots of $x^5 - 1 = 0$ then find $\displaystyle \frac{\omega - \alpha _1}{\omega^2 - \alpha _1} \cdot \frac{\omega - \alpha _2}{\omega^2 - \alpha _2} \cdot \frac{\omega - \alpha _3}{\omega^2 - \alpha _3} \cdot \frac{\omega - \alpha _4}{\omega^2 - \alpha _4} $

  1. $\omega^2$

  2. $1$

  3. $\omega$

  4. $(\omega-\alpha _1)(\omega-\alpha _2)(\omega-\alpha _3)(\omega-\alpha _4)$


Correct Option: C
Explanation:

$x^5 - 1 = 0$ has roots $1, \alpha _1, \alpha _2, \alpha _3, \alpha _4$
$\therefore (x^5 - 1) = (x- 1) (x - \alpha _1) (x - \alpha _2) (x - \alpha _3) (x- \alpha _4)$
$\Rightarrow \displaystyle \frac{x^5 -1}{x - 1} = (x - \alpha _1) (x- \alpha _2) (x - \alpha _3) (x - \alpha _4)$           ........   (1)
Putting $x = \omega$ (1) we have
$\displaystyle \frac{\omega^5 - 1}{\omega - 1} = (\omega - \alpha _1) (\omega - \alpha _2) (\omega - \alpha _3) (\omega - \alpha _4)$
$\displaystyle \frac{\omega^2 - 1}{\omega - 1} = (\omega - \alpha _1) (\omega - \alpha _2) (\omega - \alpha _3) (\omega - \alpha _4)$         ....... (2)
and putting $x = \omega^2$ in (1) we have
$\displaystyle \frac{\omega^{10} - 1}{\omega^2 - 1} = (\omega^2- \alpha _1) (\omega^2 - \alpha _2) (\omega^2 - \alpha _3) (\omega^2 - \alpha _4)$
$\Rightarrow \displaystyle \frac{\omega - 1}{\omega^2 - 1} = (\omega^2- \alpha _1) (\omega^2 - \alpha _2) (\omega^2 - \alpha _3) (\omega^2 - \alpha _4)$           ....... (3)
Dividing (2) by (3)
then $\displaystyle \frac{\omega - \alpha _1}{\omega^2 - \alpha _1} \cdot \frac{\omega - \alpha _2}{\omega^2 - \alpha _2} \cdot \frac{\omega - \alpha _3}{\omega^2 - \alpha _3} \cdot \frac{\omega - \alpha _4}{\omega^2 - \alpha _4} \cdot = \frac{(\omega^2 - 1)^2}{(\omega - 1)^2}$
                                                                                  $= \displaystyle \frac{\omega^4 + 1 - 2 \omega^2}{\omega^2 + 1 - 2 \omega}$
                                                                                   $= \displaystyle \frac{\omega + 1 - 2 \omega^2}{\omega^2 + 1 - 2 \omega}$
                                                                                   $= \displaystyle \frac{- \omega^2 - 2 \omega^2}{- \omega - 2 \omega}$
                                                                                    $= \displaystyle \frac{- 3 \omega^2}{- 3 \omega}$
                                                                                    $= \omega$

Ans: C

If $\alpha$ is the n$^{th}$ root of unity, then $1+2\alpha+3\alpha^2+.... $ to $n$ terms equal to

  1. $\displaystyle \frac {-n}{(1-\alpha)^2}$

  2. $\displaystyle \frac {-n}{1-\alpha}$

  3. $\displaystyle \frac {-2n}{1-\alpha}$

  4. $\displaystyle \frac {-2n}{(1-\alpha)^2}$


Correct Option: B
Explanation:

$S=1+2\alpha+3\alpha^{2}+...n\alpha^{n-1}$
$\alpha S=\:\:\alpha+2\alpha^{2}+3\alpha^{3}+...(n-1)\alpha^{n-1}+n\alpha^{n}$
$S(1-\alpha)=1+\alpha+\alpha^{2}+\alpha^{3}+...\alpha^{n-1}-n\alpha^{n}$
$S(1-\alpha)=\dfrac{1-\alpha^{n}}{1-\alpha}-n\alpha^{n}$
Now $\alpha^{n}=1$ since it is the $n^{th}$ root of unity.
Therefore,
$S(1-\alpha)=-n$
$S=\dfrac{-n}{1-\alpha}$

If $\displaystyle\ \alpha$ is nonreal and $\displaystyle\ \alpha=\sqrt[5]{1}$ then the value of $\displaystyle\ 2^{|1+\alpha+\alpha^{2}+\alpha^{3} +\alpha^{-1}|}$ is equal to

  1. $\displaystyle\ 4$

  2. $\displaystyle\ 2$

  3. $\displaystyle\ 1$

  4. None of these


Correct Option: C
Explanation:

We have $1 + \alpha +\alpha^2 +\alpha^3 +\alpha^4 = 0$


$ 1 + \alpha +\alpha^2 + \alpha^3 +\alpha^{-1} $
$= -\alpha^4 + \dfrac{1}{\alpha} $
$ = \dfrac{1 -\alpha^5}{\alpha} $
$ =0 $
Hence, 
$2^{| 1+ \alpha + \alpha^2 +\alpha^3 + \alpha^{-1} | } =1 $

If n is an odd positive integer and $ I,\alpha _{1},\alpha _{2},....\alpha _{n-1}$ are the $n,n^{th}$ roots of unity, then $\left ( 3+\alpha ^{1} \right )\left ( 3+\alpha ^{2} \right )....\left ( 3+\alpha ^{n-1} \right )$ equals

  1. $\displaystyle \frac{3^{n}+1}{4}$

  2. $\displaystyle \frac{3^{n}-1}{2}$

  3. $\displaystyle \frac{3^{n}-1}{4}$

  4. None of these


Correct Option: A
Explanation:

$x^{n}-1=(x-1)(x-\alpha _{1})(x-\alpha _{2})(x-\alpha _{3})...(x-\alpha _{n-1})$
$\dfrac{x^{n}-1}{x-1}=(x-\alpha _{1})(x-\alpha _{2})(x-\alpha _{3})...(x-\alpha _{n-1})$
$(x-\alpha _{1})(x-\alpha _{2})(x-\alpha _{3})...(x-\alpha _{n-1})=1+x+x^{2}+...x^{n-1}$
Substituting  $x=-3$.
$(3+\alpha _{1})(3+\alpha _{2})(3+\alpha _{3})...(3+\alpha _{n-1})=1-3+3^{2}+...(-1)^{n-1}3^{n-1}$
Therefore $(3+\alpha _{1})(3+\alpha _{2})(3+\alpha _{3})...(3+\alpha _{n-1})$
$=\dfrac{1-(-3)^{n}}{1-(-3)}$
Now, $n$ is odd, therefore
$=\dfrac{3^{n}+1}{4}$

$(1-\omega +\omega^{2})(1-\omega^{2}+\omega^{4})(1-\omega^{4}+\omega^{8})......$to 2n factors =

  1. 2

  2. $2^{2n}$

  3. 2n

  4. none of these


Correct Option: B
Explanation:
Given,

$(1−ω+ω^2)(1−ω^2+ω^4)(1−ω^4+ω^8)$...... to $2n$

we have,

$1+w+w^2=0$

and $w^3=1$

$\Rightarrow (-w-w)(-w^2-w^2)(-w-w)....................2n$

$=(-2w)(-2w^2)(-2w).............2n$

here, we can see, 2 consecutive terms are same and are even, so we get,

$=(4w^3)(4w^3)(4w^3).........2n$

$=4 \times 4 \times .........2n$

$=2^2.........2n$

for $2n$ terms, we get,

$=2^{2n}$

If $\alpha$ is the $n^{th}$ root of unity, then $1+2\alpha+3\alpha^{2}+...$ to $n$ terms is equal to

  1. $\displaystyle -\frac { n }{ { \left( 1-\alpha  \right)  }^{ 2 } } $

  2. $\displaystyle -\frac { n }{ { \left( 1-\alpha  \right)  }} $

  3. $\displaystyle -\frac { 2n }{ { \left( 1-\alpha  \right)  } } $

  4. $\displaystyle -\frac { 2n }{ { \left( 1-\alpha  \right)  }^{ 2 } } $


Correct Option: B
Explanation:

$S=1+2\alpha+3\alpha^{2}+....n\alpha^{n-1}$
$S\alpha=\alpha+2\alpha^{2}+3\alpha^{3}...(n-1)\alpha^{n-1}+n\alpha^{n}$
$S(1-\alpha)=1+\alpha+\alpha^{2}+...\alpha^{n-1}-n\alpha^{n}$
$S(1-\alpha)=\dfrac{\alpha^{n}-1}{\alpha-1}-n\alpha^{n}$
Since $\alpha$ is the nth root of unity, hence $\alpha^{n}=1$
Thus
$S(1-\alpha)=\dfrac{\alpha^{n}-1}{\alpha-1}-n\alpha^{n}$
$S(1-\alpha)=\dfrac{1-1}{\alpha-1}-n$
$S(1-\alpha)=-n$
$S=-\dfrac{n}{1-\alpha}$

if $\displaystyle\ z _{\gamma }=\cos \frac{2\gamma \pi}{5}+i\sin \frac{2\gamma \pi}{5}=0$, $\displaystyle\ \gamma = 0,1,2,3,4.....$ then $\displaystyle\ z _{1}z _{2}z _{3}z _{4}z _{5}$ is equal to

  1. $\displaystyle\ -1$

  2. $\displaystyle\ 0$

  3. $\displaystyle\ 1$

  4. $none\ of\ these$


Correct Option: C
Explanation:

Given, $z _\gamma = \cos{\frac{2 \pi \gamma}{5}} + i \sin{\frac{2 \pi \gamma}{5}}$ where $\gamma = 1, 2, 3, 4, 5.$
Thus, $z _\gamma = e^(i \frac{2 \pi \gamma}{5})$
Thus, $z _1z _2z _3z _4z _5 = e^(\frac{2 \pi}{5} + \frac{4 \pi}{5} + \frac{6 \pi}{5} + \frac{8 \pi}{5} + \frac{10 \pi}{5}) $
$= e^{6 \pi}$
$= \cos(6 \pi) + i \sin(6 \pi)$
$= 1$

If the fourth roots of unity are $\displaystyle\ z _{1},z _{2},z _{3},z _{4}$ then $\displaystyle\ z _{1}^{2}+z _{2}^{2}+z _{3}^{2}+z _{4}^{2}$ is equal to

  1. $\displaystyle\ 1$

  2. $\displaystyle\ 0$

  3. $\displaystyle\ i$

  4. None of these


Correct Option: B
Explanation:

If $z$ be the fourth roots of unity then, $z^4=1$
$\Rightarrow (z^4-1)=0\Rightarrow (z^2-1)(z^2+1)=0$
$\Rightarrow z=\pm 1, \pm i,$ where $i^2=-1$
$\therefore z _1^2+z _2^2+z _3^2+z _4^2=1+1+i^2+i^2=2-2=0$

If $a = cos \dfrac{2\pi}{7}+i  sin\dfrac{2\pi}{7}$, then find the quadratic equation whose roots are $a = a + a^2 + a^4$ and $\beta = a^3 + a^5 + a^6$.

  1. $x^2 + x - 1=0$

  2. $x^2 + x - 2=0$

  3. $x^2 + x + 1=0$

  4. $x^2 + x + 2=0$


Correct Option: D
Explanation:

$a = cos (2\pi/7)+i  sin(2\pi/7)$
$\Longrightarrow a^7 = [cos(2\pi/7)+i  sin(2\pi/7)]^7$
$= cos 2\pi + i sin 2\pi = 1$          (1)
$S = \alpha + \beta = (a + a^2 + a^4) + (a^3 + a^5 + a^6)$
$= a +a^2 +a^3 +a^4 + a^5 +a^6 = \frac{a(1-a^6)}{1-a}$
$= \frac{a-a^7}{1-a} = \frac{a-1}{1-a} = -1$                           (2)
$P= \alpha \beta = (a+a^2+a^4)(a^3+a^5+a^6)$
$= a^4+a^6 +a^7+a^5+a^7+a^8+a^7+a^9+a^{10}$
$= a^4+a^6+1+a^5+1+a+1+a^2+a^3$         [From Eq. (1)] 
$= 3+(a+ a^2+ a^3+ a^4+ a^5 + a^6)$ 
$= 3+S = 3-1=2$              [From Eq. (2)]
Therefore, the required equation is 
$x^2 -Sx + P = 0$
$\Longrightarrow x^2 + x + 2=0$


Ans: D

If $\displaystyle z=\cos \frac{8\pi }{11}+i\sin\frac{8\pi }{11},$ then Real $\displaystyle \left ( z+z^{2}+z^{3}+z^{4}+z^{5} \right )$ is

  1. $\displaystyle -\frac{1}{2}$

  2. 0

  3. $\displaystyle \frac{1}{2}$

  4. none


Correct Option: A
Explanation:

Real (z) $\displaystyle =\frac{z+\bar{z}}{2}=\frac{1}{2}\left ( z+\frac{1}{z} \right )$


$\displaystyle \because z\bar{z}=\cos ^{2}\frac{8\pi }{11}+\sin ^{2}\frac{8\pi }{11}=1\ \ \therefore \bar{z}=\frac{1}{z}$

$\displaystyle \because$ E=Real part of $\displaystyle \left ( z+z^{2}+z^{3}+z^{4}+z^{5}+\frac{1}{z}+\frac{1}{z^{2}}+\frac{1}{z^{3}}+\frac{1}{z^{4}}+\frac{1}{z^{5}} \right )$

Now $\displaystyle z^{11}= \cos 8\pi +i\sin 8\pi = 1$

$\displaystyle \therefore \frac{1}{z^{4}}= \frac{z^{7}}{z^{11}}= z^{7}$ etc.
$\displaystyle \therefore E= \frac{1}{2}\left [z+z^{2}+z^{3}+z^{4}+z^{5}+z^{10}+z^{9}+z^{8}+z^{7}+z^{6} \right ]$

Add and subtract $\displaystyle z^{11}.$
$\displaystyle \therefore E= \frac{1}{2}$ [sum of G.P. of 11 terms-$\displaystyle z^{11}$]

$\displaystyle = \frac{1}{2}\left [ \frac{z\left ( 1-z^{11} \right )}{1-z}-z^{11} \right ]= \frac{1}{2}\left ( 0-1 \right )= -\frac{1}{2}$ by (I)

If $\displaystyle \omega $ is fifth root of unity, then $\displaystyle \log _2 \mid 1+\omega +\omega ^{2}+\omega ^{3}-\omega ^{-1}\mid $ is equal to

  1. $1$

  2. $0$

  3. $-1$

  4. $2$


Correct Option: A
Explanation:

$1+w+w^{2}+...w^{3}-\dfrac{1}{w}$
$=\dfrac{w+w^{2}+w^{3}+...w^{4}-1}{w}$


$=\dfrac{1}{w}[\dfrac{w(1-w^{4})}{1-w}-1]$

$=\dfrac{1}{w}[\dfrac{w-w^{5}}{1-w}-1]$

$=\dfrac{1}{w}[\dfrac{w-1}{1-w}-1]$

$=\dfrac{1}{w}[-2]$

Now
$|\dfrac{-2}{w}|$

$=\dfrac{|-2|}{|w|}$

$=\dfrac{2}{1}$

$=2$

$=log _{2}(2)$

$=1$
Hence, option 'A' is correct.

If $w$ be complex $n^{th}$ root of unity and $r$ is an integer not divisible by $n$, then the sum of the $r$th powers of the nth roots of unity is

  1. $0$

  2. $1$

  3. $w$

  4. $n$


Correct Option: A
Explanation:
We have, for $n^{th}$ root of unity denoted by $\alpha i$
$1 + \alpha _{1}+\alpha _{2}+\alpha _{3}---------\alpha _{n-1}=\dfrac{1(1-(\alpha)^{2})}{1-\alpha}$                    [where $\alpha _{i}= e^{i \dfrac{2 \pi k}{n}}$ Thus, $\alpha _{1}=e^{i\dfrac{2 \pi}{n}}$ $\alpha _{1}=e^{i\dfrac{4 \pi}{n}}$---------------form a G.P. with ratio $\alpha = e^{i 2 \pi /2}$]
for power r, expression changes to,
$1+\alpha _{1}^{r}+\alpha _{2}^{r}+\alpha _{3}^{r}---------\alpha _{n-1}^{r}=\dfrac{1-(\alpha^{r})^{2}}{}$ [Given $r \neq kn$ $\Rightarrow \alpha^{r} \neq 1$]
$=\dfrac{1-(\alpha^{n})^{r}}{1-\alpha^{r}}$
But $\alpha^{2}=1$
Thus $\dfrac{1-1}{1-\alpha^{r}}=0$

If $1,\alpha,\alpha^ 2......\alpha^{n}$ are the $n^{th}$ roots of unity then $^nC _1+ ^nC _2.\alpha + ^nC _3.\alpha^2 ........+^nC _n.\alpha^{n}$ is equal to

  1. $\displaystyle \frac{1}{\alpha}$

  2. $\displaystyle \frac{1}{\alpha} (2^n -1)$

  3. $\alpha$

  4. $\displaystyle \frac{1}{\alpha} \left[ (1+\alpha)^n - 1\right]$


Correct Option: D
Explanation:

$^nC _1 + ^nC _2.\alpha + ^nC _3.\alpha^2 + ......... + ^nC _n.\alpha^{n1}$

$\Rightarrow \displaystyle \frac{1}{\alpha} [^n C _1. \alpha + ^n C _2 . \alpha^2 + ....... + ^n C _n. \alpha^n]$

$\Rightarrow \displaystyle \frac{1}{\alpha} [^nC _0.1+^n C _1. \alpha + ^n C _2 . \alpha^2 + ....... + ^n C _n. \alpha^n -1] \quad \dots (^nC _0=1)$

$\Rightarrow \displaystyle \frac{1}{\alpha} [(1 + \alpha)^n - 1]$

$^nC _1 + ^nC _2.\alpha + ^nC _3.\alpha^2 + ......... + ^nC _n.\alpha^{n1}=\dfrac{1}{\alpha} [(1 + \alpha)^n - 1]$

If $\alpha $ is a non-real root of $x^6=1$, then $\displaystyle \frac{\alpha ^5+\alpha ^3+\alpha +1}{\alpha ^2+1}=$

  1. $\alpha ^2$

  2. $0$

  3. $-\alpha ^2$

  4. $\alpha $


Correct Option: C
Explanation:


$1+\alpha+...+\alpha^{5}=0$ [sum of n roots of unity]
$\Rightarrow 1+\alpha +{ \alpha  }^{ 3 }+{ \alpha  }^{ 5 }=-\left( { \alpha  }^{ 2 }+{ \alpha  }^{ 4 } \right) $
$\displaystyle \Rightarrow 1+\alpha +{ \alpha  }^{ 3 }+{ \alpha  }^{ 5 }=-{ \alpha  }^{ 2 }\left( { 1+\alpha  }^{ 2 } \right) $
$\displaystyle \Rightarrow \frac { 1+\alpha +{ \alpha  }^{ 3 }+{ \alpha  }^{ 5 } }{ { 1+\alpha  }^{ 2 } } =-{ \alpha  }^{ 2 }$

lf $\alpha$ be the $n^{th}$ root of unity then the sum of the series $1+2\alpha+3\alpha^{2}+\ldots.+n\alpha^{n-1}$ equals?

  1. $\displaystyle \frac{-n}{1-\alpha}$

  2. $\displaystyle \frac{-n}{(1-\alpha)^{2}}$

  3. $\displaystyle \frac{n}{(1-\alpha)}$

  4. $\displaystyle \frac{n}{(1-\alpha)^{2}}$


Correct Option: A
Explanation:

$s=1+2\alpha+3\alpha^{2}- -n\alpha^{n-1}$
$s\alpha=\alpha+2\alpha^{2}+3\alpha^{3}- - n\alpha
\So, s-s\alpha=1+\alpha+\alpha^{2}- -\alpha^{n-1}-n\alpha^{n}$
(Sum of roots of unity)
$\Rightarrow s (1-\alpha)=-n\alpha^{n}$
$\Rightarrow s=\dfrac{-n\alpha^{n}}{1-\alpha}=\dfrac{-n}{1-\alpha}$

as $\alpha^{n}=1$
$\alpha$ being of unity root

If $(2 + i \sqrt 3)$ is a root of the equation $x^2 + px + q = 0$, where p and q are real, then (p, q) equals to

  1. $(4, 7)$

  2. $(-4, -7)$

  3. $(-4, 7)$

  4. $(4, -7)$


Correct Option: C
Explanation:

Since $2 + i \sqrt 3$ is one root, then other root will be $2 - i \sqrt 3$.
$\therefore x^2 + px + q = 0$ is given equatiion
$\therefore$ Sum of roots $= 2 + i \sqrt 3 + 2 - i \sqrt 3 = p$
$\therefore p = - 4$
Product of roots $q = 4 + 3 = 7$

In the multiplicative group of $n^{th}$ roots of unity the inverse of ${ \omega  }^{ k },\left( k<n \right) $ is

  1. ${ \omega }^{ { 1 }/{ k } }$

  2. ${ \omega }^{ -1 }$

  3. ${ \omega }^{ n-k }$

  4. ${ \omega }^{ { n }/{ k } }$


Correct Option: C
Explanation:

Since $\omega $ is the $n^{th}$ root of unity, hence $\omega^{n}=1$.
Now inverse of $\omega ^{k}$ where $k<n$ is
$=\dfrac{1}{\omega ^{k}}$
$=\dfrac{\omega^{n}}{\omega^{k}}$
$=\omega^{n-k}$.
Hence inverse of $\omega^{k}$
$={\omega^{-k}}$
$=\omega^{n-k}$. 

The 4th roots of unity in the argand plane form a

  1. Square

  2. Rectangle

  3. Parallelogram

  4. Rhombus


Correct Option: A
Explanation:

The fourth roots of unity are $1,i,-1, -i $. Hence, they form a square in the Argand plane. 
We can see that by plotting the points on the graph with coordinate system according to that of complex numbers.

If $\omega, \omega^2, \omega^3, ........ \omega^{n - 1}$ are nth roots of unity then $(1- \omega) (1- \omega^2) ....... (1 - \omega^{n  -1})$ equals:

  1. $0$

  2. $1$

  3. $n$

  4. $n^2$


Correct Option: C
Explanation:

Since $1, \omega, \omega^2, \omega^3, ......... \omega^{n - 1}$ are nth roots of unity, therefore, we have the identity
$(x - 1)(x - \omega)(x - \omega^2) ...... (x - \omega^{n - 1})$
$= x^n - 1$
or $(x - \omega)(x - \omega^2) ...... (x - \omega^{n - 1}) = \displaystyle \frac{x^n - 1}{x - 1}$
$= x^{n - 1} + x^{n - 2} + ...... + x + 1$
Putting x = 1 on both sides, we get $(1 - \omega) (1 - \omega^2) (1 - \omega^{n - 1}) = n$

Which of the following is incorrect regarding $n^{th}$ roots of unity?

  1. The number of distinct roots is $n$

  2. The roots are in G.P. with common ratio $c = \dfrac{2\pi}{n}$

  3. The arguments are in A.P. with common difference $\dfrac{2\pi}{n}$

  4. Product of the roots is $0$ and the sum of the roots is $\pm 1$


Correct Option: D
Explanation:
Consider ${x}^{n}=1$ , where $x$ is $n^{th}$ root of unity
Here in ${x}^{n}-1=0$ , the product of roots is $\pm1$ and the sum of roots is $0$
Therefore option $D$ is incorrect 

If $2 + i$ and $\sqrt {5} - 2i$ are the roots of the equation $(x^{2} + ax + b)(x^{2} + cx + d) = 0$, where $a, b, c, d$ are real constants, then product of all roots of the equation is

  1. $40$

  2. $9\sqrt {5}$

  3. $45$

  4. $35$


Correct Option: C
Explanation:

$2 - i$ and $\sqrt {5} + 2i$ are other roots.
So, Product is $(2 + i)(2 - i)(\sqrt {5} + 2i)(\sqrt {5} - 2i)$
$= 5\times 9 = 45$

$1 , z _1, z _2, z _3, ..., z _{n-1}$ are the $n$th roots of unity, then the value of $\displaystyle\frac{1}{(3-z _1)} +\displaystyle\frac{1}{(3-z _2)} + ... +\displaystyle\frac{1}{(3-z _{n-1})}$ is equal to  

  1. $\displaystyle \frac { n{ 3 }^{ n-1 } }{ { 3 }^{ n }-1 } -\displaystyle \frac { 1 }{ 2 } $

  2. $\displaystyle \frac { n{ 3 }^{ n-1 } }{ { 3 }^{ n }-1 } +1$

  3. $\displaystyle \frac { n{ 3 }^{ n-1 } }{ { 3 }^{ n }-1 } -1$

  4. none of these


Correct Option: A
Explanation:

If $\alpha _1, \alpha _2, ... , \alpha _m$ are the roots of polynomial equation
$\quad f(x) = a _0x^m + a _1x^{m-1} + ... + a _{m-1}x + a _m = 0$
Then,
$\quad f(x) = a _0(x-\alpha _1) ... (x-\alpha _m).$


and $\quad \displaystyle\frac{f'(x)}{f(x)} = \displaystyle\frac{1}{x-\alpha _1}+...+\displaystyle\frac{1}{x-\alpha _m}$

The equation in question is ${ x }^{ n }-1=0$

 $f(x)={ x }^{ n }-1=(x-1)(x-{ z } _{ 1 })...(x-{ z } _{ n-1 })$


Thus, $\dfrac { f'(x) }{ f(x) } =\dfrac { n{ x }^{ n-1 } }{ { x }^{ n }-1 } =\dfrac { 1 }{ x-1 } +\dfrac { 1 }{ x-{ z } _{ 1 }  } +...+\dfrac { 1 }{ x-{ z } _{ n-1 } } $

Substituting $x=3$:

$\dfrac { 1 }{ 3-1 } +\dfrac { 1 }{ 3-{ z } _{ 1 }  } +...+\dfrac { 1 }{ 3-{ z } _{ n-1 } } =\dfrac { n{ 3 }^{ n-1 } }{ { 3 }^{ n }-1 } $

Hence, $\dfrac { 1 }{ 3-{ z } _{ 1 }  } +...+\dfrac { 1 }{ 3-{ z } _{ n-1 } } =\dfrac { n{ 3 }^{ n-1 } }{ { 3 }^{ n }-1 } - \dfrac { 1 }{ 2 }$

Hence,  (A) is correct.

If $1,\omega,\omega^{2},...,\omega^{n-1}$ are $n^{th}$ roots of unity, then the value of $(5-\omega)(5-\omega^{2})...(5-\omega^{n-1})=$

  1. $\displaystyle \frac{5^{n}-2}{4}$

  2. $\displaystyle \frac{5^{n}+2}{4}$

  3. $\displaystyle \frac{5^{n}+1}{4}$

  4. $\displaystyle \frac{5^{n}-1}{4}$


Correct Option: D
Explanation:

${ x }^{ n }-1=0$ has n roots (of unity).
Thus, ${ x }^{ n }-1=(x-1)(x-\omega )(x-{ \omega  }^{ 2 })...(x-{ \omega  }^{ n-1 })$.
Substitute $x=5$: 
${ 5 }^{ n }-1=(5-1)(5-\omega )(5-{ \omega  }^{ 2 })...(5-{ \omega  }^{ n-1 })$
=> $(5-\omega )(5-{ \omega  }^{ 2 })...(5-{ \omega  }^{ n-1 })=\dfrac { { 5 }^{ n }-1 }{ 4 } $
Hence, option D is correct.

Value of $\displaystyle sin \frac{\pi}{2n + 1} sin \frac{2 \pi}{2n + 1} sin \frac{3 \pi}{2n + 1} ..... sin \frac{n\pi}{2n + 1}$.

  1. $\dfrac{\sqrt{2n+1}}{2^n}$

  2. 1

  3. $\dfrac{n(n+1)}{2}$

  4. None of these


Correct Option: A
Explanation:

The roots of the equation $x^{2n + 1}- 1 = 0$ are
$1, \displaystyle cos \frac{2 \pi}{2n + 1} + i  sin  \frac{2 \pi}{2n + 1}, cos \frac{4 \pi}{2n + 1} + i  sin \frac{4 \pi}{2n + 1}, ........, cos \frac{4 n \pi}{2n + 1} + i  sin  \frac{4n  \pi}{2n + 1}$
Therefore $\displaystyle x^{2n+1} - 1 = (x - 1) \left ( x - cos \frac{2 \pi}{2n + 1} - i  sin \frac{2 \pi}{2n + 1} \right ) \left ( x - cos \frac{4 \pi}{2n + 1} - i  sin \frac{4 \pi}{2n + 1} \right ) ....... \left ( x - cos \frac{4 n\pi}{2n + 1} - i  sin \frac{4n \pi}{2n + 1} \right )$
Further since
$\displaystyle cos \left ( \frac{(2n + 1) - r}{2n + 1} \right ) 2\pi = cos \frac{2 r \pi}{2n + 1}$
and $\displaystyle sin \left ( \frac{(2n + 1) - r}{2n + 1} \right ) 2\pi = -sin \frac{2 r \pi}{2n + 1}$
it follows that
$\displaystyle \left ( x - cos \frac{2 \pi}{2n + 1} - i  sin \frac{2 \pi}{2n + 1}\right ) \left ( x - cos \frac{4 \pi}{2n + 1} - i  sin \frac{4 \pi}{2n + 1}\right )$
$= x^2 - 2x  cos \displaystyle \frac{2 \pi}{2n + 1} + 1$
$\left ( x - cos \frac{4 \pi}{2n + 1} - i  sin \frac{4 \pi}{2n + 1}\right )\left ( x - cos \frac{(4n - 2) \pi}{2n + 1} - i  sin \frac{(4n - 2) \pi}{2n + 1}\right )$
$=x^2 - 2x  cos \displaystyle \frac{4 \pi}{2n + 1} + 1$
$\left ( x - cos \frac{2 n\pi}{2n + 1} - i  sin \frac{2 n\pi}{2n + 1}\right )\left ( x - cos \frac{(2n + 2) \pi}{2n + 1} - i  sin \frac{(2n + 2)}{(2n + 1)} \pi\right )$
$= x^2 - 2x   cos \frac{2 n \pi}{2n + 1} + 1$
Thus the polynomial $x^{2n + 1} - 1$ can be rewritten thus
$x^{2n + 1} - 1 = (x - 1) \displaystyle \left ( x^2 - 2x  cos  \frac{2 \pi}{2n + 1} + 1\right ) \left ( x^2 - 2x  cos  \frac{4 \pi}{2n + 1} + 1\right )........ \left ( x^2 - 2x  cos  \frac{2 n\pi}{2n + 1} + 1\right ) $
or $\displaystyle \frac{x^{2n + 1} - 1}{x - 1} = \left ( x^2 - 2x  cos  \frac{2 \pi}{2n + 1} + 1\right ) \left ( x^2 - 2x  cos  \frac{4 \pi}{2n + 1} + 1\right ) ......... \left ( x^2 - 2x  cos  \frac{2 n\pi}{2n + 1} + 1\right ) $
Taking $\displaystyle \lim _{x \rightarrow 1}$ on both sides
$(2n + 1) = 2^{2n} sin^2 \displaystyle \frac{\pi}{2n + 1} sin^2 \frac{2 \pi}{2n + 1} ..... sin^2 \frac{n \pi}{2n + 1}$
Hence, $\displaystyle sin \frac{\pi}{2n + 1} sin \frac{2 \pi}{2n + 1} ...... sin \frac{n \pi}{2n + 1} = \frac{\sqrt{(2n + 1)}}{2^n}$


If $ 1,\alpha ,\alpha ^{2} .....\alpha ^{n-1}$ are n roots of unity then ,$1.\alpha .\alpha ^{2}....\alpha ^{n-1}$ equals

  1. $\left ( -1 \right )^{n-1}$

  2. 0

  3. 1

  4. -1


Correct Option: A
Explanation:

$1,\alpha ,{ \alpha  }^{ 2 }...{ \alpha  }^{ n-1 }$ are the nth roots of unity. Thus, they are solutions of the equation: ${ x }^{ n }-1=0$. 
Thus, product of roots $= { (-1) }^{ n }(\dfrac { -1 }{ 1 } )$
(i.e. ${ (-1) }^{ n }
$constant term / coefficient of ${ x }^{ n }$)
Thus, the product = ${ (-1) }^{ n }(\dfrac { -1 }{ 1 } )={ (-1) }^{ n }(\dfrac { -1 }{ 1 } )={ (-1) }^{ n+1 }={ (-1) }^{ 2 }{ (-1) }^{ n-1 }=1{ (-1) }^{ n-1 }={ (-1) }^{ n-1 }$
Hence, (A) is correct.

If $\displaystyle \alpha = \cos\frac{8\pi}{11}+i\sin\frac{8\pi }{11}$ then $\displaystyle Re(\alpha +\alpha^{2}+\alpha^{3}+\alpha^{4}+\alpha^{5})$ equals

  1. 0

  2. $\displaystyle -\frac{1}{2}$

  3. $\displaystyle \frac{1}{2}$

  4. None of these


Correct Option: B
Explanation:

Given : $\displaystyle \alpha = \cos\dfrac{8\pi}{11}+i\sin\dfrac{8\pi }{11}$
$\displaystyle \therefore \alpha ^{11}= \cos 8\pi +i\sin 8\pi = 1$
$\displaystyle \sum _{n= 0}^{10}\alpha ^{n}= \dfrac{1-\alpha ^{11}}{1-\alpha }= 0$ (sum of 11th roots of unity)
Now $\displaystyle Re(z)= \dfrac{z+\bar{z}}{2}=\dfrac{sum \ of\  11 \ roots\  of\  unity -1}{2}= -1/2 $

If $\displaystyle \alpha  $ be the $\displaystyle n^{th}  $ root of unity then the sum of the series
$\displaystyle 1+2\alpha+3\alpha^{2}+...n\alpha ^{n-1}$ equals.

  1. $\displaystyle \dfrac{-n}{1-\alpha}$

  2. $\displaystyle \dfrac{-n}{1-\alpha}^{2}$

  3. $\displaystyle \dfrac{n}{1-\alpha}$

  4. None of these


Correct Option: A
Explanation:

$S=1+2\alpha+3\alpha^{2}+...n\alpha^{n-1}$
Here $S$ forms an A.G.P
Therefore
$S=1+2\alpha+3\alpha^{2}+...n\alpha^{n-1}$
$S(\alpha)=\alpha+2\alpha^{2}+3\alpha^{3}+...(n-1)\alpha^{n-1}+n\alpha^{n}$
Hence
$S(1-\alpha)=1+\alpha+\alpha^{2}+....\alpha^{n-1}-n\alpha^{n}$
$S(1-\alpha)=\dfrac{1-\alpha^{n}}{1-\alpha}-n\alpha^{n}$
$S(1-\alpha)=0-n$
$S=\dfrac{-n}{1-\alpha}$
Hence, option 'A' is correct.

State true or false:

$\displaystyle cos \frac{\pi}{2n + 1} cos \frac{2 \pi}{ 2n + 1} cos \frac{3 \pi}{2n + 1} ..... cos \frac{n \pi}{2n + 1}=\frac{1}{2^n}$.

  1. True

  2. False


Correct Option: A
Explanation:

$\displaystyle \frac{2^{2n + 1} - 1}{x - 1} = \left ( x^2 - 2x   cos  \frac{2 \pi}{2n + 1} + 1\right ) \left ( x^2 - 2x  cos \frac{4 \pi}{2n + 1} + 1\right ) ....... \left ( x^2 - 2x   cos \frac{2n  \pi}{2n + 1}
 + 1\right )$
Taking $\displaystyle \lim _{x \rightarrow - 1}$ on both sides, we have
$1 = 4^n cos^2 \displaystyle \frac{\pi}{2n + 1} cos^2 \frac{2 \pi}{2n + 1} ..... cos^2 \frac{n \pi}{2n + 1}$
$\therefore \displaystyle cos \frac{\pi}{2n + 1} cos \frac{2\pi}{2n + 1} ..... cos \frac{n \pi}{2n + 1} = \frac{1}{2^n}$

If $r$ is non-real and $r=\sqrt [ 5 ]{ 1 } $, then the value of $ { 2 }^{ \left| 1+r+{ r }^{ 2 }+{ r }^{ -2 }-{ r }^{ -1 } \right|  }$ is equal to

  1. $2$

  2. $4$

  3. $8$

  4. None of these


Correct Option: B
Explanation:

$\left| 1+r+{ r }^{ 2 }+{ r }^{ -2 }-{ r }^{ -1 } \right| =\left| 1+r+{ r }^{ 2 }+{ r }^{ 3 }-{ r }^{ 4 } \right| $


$[\because { r }^{ 5 }=1\Rightarrow { r }^{ 3 }.{ r }^{ 2 }=1\Rightarrow { r }^{ -2 }={ r }^{ 3 }$ and ${ r }^{ 4 }.r=1\Rightarrow { r }^{ -1 }={ r }^{ 4 }]$


$\displaystyle=\left| 1+r+{ r }^{ 2 }+{ r }^{ 3 }+{ r }^{ 4 }-2{ r }^{ 4 } \right| =\left| \frac { 1-{ r }^{ 5 } }{ 1-r } -2{ r }^{ 4 } \right| =\left| 0-2{ r }^{ 4 } \right| \quad \quad \quad \left[ \because { r }^{ 5 }=1 \right] $

$=2{ \left| r \right|  }^{ 4 }=2\left( 1 \right) =2\quad \quad [\because \left| r \right| =1$ as ${ r }^{ 5 }=1]$

$\therefore { 2 }^{ \left| 1+r+{ r }^{ 2 }+{ r }^{ -2 }-{ r }^{ -1 } \right|  }={ 2 }^{ 2 }=4$

If $\displaystyle \alpha _{1}, \alpha _{2}, \cdots \alpha _{100}$ are all the 100th roots of unity, then $\displaystyle \sum \sum \left ( \alpha _{i}\alpha _{j} \right )^{5}$ is $\displaystyle 1\leq i< j\leq 100$

  1. $20$

  2. $\displaystyle \left ( 20 \right )^{1/20}$

  3. $0$

  4. none


Correct Option: C
Explanation:

$\displaystyle 2\sum ab= \left ( \sum a \right )^{2}-\sum a^{2}$
$\displaystyle \therefore 2\sum \sum \left ( \alpha _{i}\alpha _{j} \right )^{5}= \left ( \alpha _{1}^{5}+\alpha _{2}^{5}+\cdots  \right )^{2}-\left ( \alpha _{1}^{10}+\alpha _{2}^{10}+\cdots  \right )$
$\displaystyle = 0-0$ ($\displaystyle \because \sum \alpha _{i}^{r}= 100$ if $\displaystyle r= 100k$
and $ \sum \alpha _{i}^{r} = 0$ if $\displaystyle r\neq 100k$)
Here both 5 and 10 are not multiples of 100.

The value of $\displaystyle \sum _{k= 1}^{6}\left ( \sin \frac{2\pi k}{7}-i\cos \frac{2\pi k}{7} \right )$ is

  1. -1

  2. 0

  3. -i

  4. None


Correct Option: D
Explanation:

$\displaystyle \sin \frac{2\pi k}{7}-i\cos \frac{2\pi k}{7}$
$\displaystyle = -i^{2}\sin \frac{2\pi k}{7}-i\cos \frac{2\pi k}{7}$
$\displaystyle = -i\left ( \cos \frac{2\pi k}{7}+i\sin \frac{2\pi k}{7} \right )= -i e^{i2\pi k/7}= -iz^{k}$
where, $\displaystyle z= \cos \frac{2\pi }{7}+i\sin \frac{2\pi }{7}$ or $\displaystyle z^{7}= 1$
or $\displaystyle z= \left ( 1 \right )^{1/7} \therefore 1+z+2^{2}+\cdots +z^{6}= 0$ ...(1)
Above being the sum of seven, seventh roots of unity
$\displaystyle \sum = -i \sum _{i= 1}^{k} z^{k}= -1\left ( z+z^{2}+\cdots +z^{6} \right )= -i\left ( -1 \right )= i$ by (I)
Alternative Method. $\displaystyle \sin \theta -i\cos \theta $
$\displaystyle = -i^{2}\sin \theta -i\cos \theta = -i\left ( \cos \theta +i\sin \theta  \right )$
$\displaystyle = -ie^{i\theta }$ where $\displaystyle \theta = \frac{2\pi }{7}$ or $\displaystyle 7\theta = 2\pi $
Hence the given sigma is
$\displaystyle \sum _{k= 1}^{6}-ie^{ik\theta }= -i\left [ e^{i\theta +}e^{2i\theta }+\cdots +e^{6i\theta } \right ]$
$\displaystyle = -ie^{i\theta }\left [ \frac{1-\left ( e^{i\theta } \right )^{6}}{1-e^{i\theta }} \right ]= -i\left [ \frac{e^{i\theta }-e^{7i\theta }}{1-e^{i\theta }} \right ]$ (G.P.)
$\displaystyle = -i\left [ \frac{e^{i\theta }-1}{1-e^{i\theta }} \right ]= -i\left ( -1 \right )= i$
$\displaystyle \because 7i\theta = 2\pi i \therefore e^{7i\theta }= \left ( \cos 2\pi +i\sin 2\pi  \right )= 1.$

Simplify the expressions of the sums

$\displaystyle cot^2 \frac{\pi}{2n + 1} + cot^2 \frac{2\pi}{2n + 1} + cot^2 \frac{3\pi}{2n + 1} + ...... + cot^2 \frac{n\pi}{2n + 1}=$

  1. $\displaystyle \frac{n (2n +1)}{3}$

  2. $\displaystyle \frac{n (2n + 1)}{6}$

  3. $\displaystyle \frac{n (2n - 1)}{3}$

  4. $\displaystyle \frac{n (2n - 1)}{6}$


Correct Option: C
Explanation:

${ (cosx+i sinx) }^{ n }=cos(nx)+i sin(nx)$
Comparing imaginary parts: $sin(nx)= _{ 1 }^{ n }{ C }sinx{ .cos }^{ n-1 }x- _{ 3 }^{ n }{ C }sin^{ 3 }x{ .cos }^{ n-3 }x+.....$
Divide both sides by $sin^{ n }x$
$\dfrac { sin(nx) }{ sin^{ n }x } = _{ 1 }^{ n }{ C }cot^{ n-1 }x- _{ 3 }^{ n }{ C }cot^{ n-3 }x+...$
Replace $n$ with $2n+1:$ $\dfrac { sin((2n+1)x) }{ sin^{ 2n+1 }x } = _{ 1 }^{ 2n+1 }{ C }cot^{ 2n }x- _{ 3 }^{ 2n+1 }{ C }cot^{ 2n-2 }x+...$
$ = _{ 1 }^{ 2n+1 }{ C }(cot^{ 2 }x)^{ n }- _{ 3 }^{ 2n+1 }{ C }(cot^{ 2 }x)^{ n-1 }+.... ----1)$
So $cot^{ 2 }x _{ i }$ are the roots of the polynomial for LHS=0 where $cot^{ 2 }x _{ i }=cot^{ 2 }(\dfrac { \pi i }{ 2n+1 } )$ where i=1,2,3,...n.
Sum of the roots is the ratio of the first two coefficients on the RHS.
Thus $\sum _{ i=1 }^{ n }{ cot^{ 2 }(\dfrac { \pi i }{ 2n+1 } )= } -\dfrac { - _{ 3 }^{ 2n+1 }{ C } }{ _{ 1 }^{ 2n+1 }{ C } } =\dfrac { (2n+1)2n(2n-1) }{ 6 } .\dfrac { 1 }{ 2n+1 } =\dfrac { n(2n-1) }{ 3 } $
Hence, (c) is correct.

- Hide questions