Properties of proportion - class-XII
Description: properties of proportion | |
Number of Questions: 35 | |
Created by: Chandra Bhatti | |
Tags: ratio and proportion maths ratio and proportions |
If two ratios are equal then their inverse ratios are equal. This property is known as
If $\dfrac {x}{y}=\dfrac {3}{4}$ and $\dfrac {x}{2z}=\dfrac {3}{2}$, then $\dfrac {2x+z}{x-2z}+\left (\dfrac {6}{7}+\dfrac {y-x}{y+x}\right )$ will be equivalent to
If $a=2+\sqrt 3$ then the value of $a+\frac {1}{a}$ is
After applying invertendo to $3:7::2:9$ we get
If $x=7-4\sqrt 3$, the value of $x^2+\displaystyle\frac{1}{x^2}$ will be
If $x=3+\sqrt 8$ then the value of $x^2+\frac {1}{x^2}$ is
If $a : b :: c : d$ then $b : a :: d : c$. This property is known as :
After applying invertendo to $31:15::18:19$ we get $15:a::b:18$
What is the value of $a+b$
Find the value of $a$ and $b$ respectively
After applying invertendo to $2:5::3:9$ we get $a:2::9:b$
Here 'x' in the following is : $\dfrac{\sqrt{a+x}+\sqrt{a-x}}{\sqrt{a+x}-\sqrt{a-x}}=b$
After applying invertendo to $30:50::80:20$ we get $50:a::b:80$
Find the value of $a-b$
After applying invertendo to $1:2::3:4$ we get
After applying invertendo to $9:12::13:40$ we get
If $\dfrac { a }{ b } =\dfrac { b }{ c } =\dfrac { c }{ d }$ then $\dfrac { { b }^{ 3 }+{ c }^{ 3 }+{ d }^{ 3 } }{ { a }^{ 3 }+{ b }^{ 3 }+{ c }^{ 3 } }$ will be equal to
If $\cfrac{{x}^{3}+{x}^{2}+x+1}{{x}^{3}-{x}^{2}+x-1}=\cfrac{{x}^{2}+x+1}{{x}^{2}-x+1}$, then the number of real-value of $x$ satisfying are
If $\cfrac{a+3d}{a+9d}=\cfrac{a+d}{a+5d}=k$, then $k$ is equal to $(a,d> 0)$
Solve for $x$:
A naughty student breaks the pencil in such a way that the ratio of two broken parts is same as that of the original length of the pencil to one of the larger part of the pencil, The ratio of the other part to the original length of pencil is:
$\dfrac{7a-3b}{7c-3d}=1, then\ \dfrac{a}{b}=\dfrac{d}{c}$
If a/b = x/y = p/q , then $\dfrac{6a + 9x + 2p}{6b + 9y + 2q}$ = _________.
Three numbers $A,B$ and $C$ are in the ratio $12\colon15\colon25$. If the sum of these numbers is $312$, find the ratio between the difference of $A$ and $B$ and the difference of $C$ and $B$.
Mark the correct alternative of the following.
If $x : y =1 : 1$, then $\dfrac{3x+4y}{5x+6y}=?$
The given property $a : b :: c : d$ then $(a - b) : b :: (c - d) : d.$ is known as
After applying invertendo to $1:2::8:9$ we get:
The given property $a : b :: c : d$ then $a : c :: b : d$ is known as:
If $\displaystyle \frac{x}{y}=\frac{6}{5}$ then $\displaystyle \frac{x^{2}+y^{2}}{x^{2}-y^{2}}$ is:
If $x=\cfrac { 4ab }{ a+b } $ then value of $\cfrac { x+2a }{ x-2a } +\cfrac { x+2b }{ x-2b } $
If $a : b = c : d = e : f$, then the value of each ratio is $(a + c + e) : (b + d + f)$
This property is called as
$\dfrac{a+be^y}{a-be^y} = \dfrac{b+ce^y}{b-ce^y} = \dfrac{c+de^y}{c-de^y}$, then $a,b,c,d$ are in
If $\cfrac { { a }^{ 3 }+3a{ b }^{ 2 } }{ 3{ a }^{ 2 }b+{ b }^{ 3 } } =\cfrac { { x }^{ 3 }+3x{ y }^{ 2 } }{ 3{ x }^{ 2 }y+{ y }^{ 3 } } $ then
If $x=\cfrac { 2\sqrt { 5 } }{ \sqrt { 3 } +\sqrt { 5 } } $, then what is the value of $\cfrac { x+\sqrt { 5 } }{ x-\sqrt { 5 } } +\cfrac { x+\sqrt { 3 } }{ x-\sqrt { 3 } } $
Which of the following ratios is equal to $13:4$ in its simplest form?
If $a : b = 3 : 5$ then $ a - b : a + b =$
If $\left( {{p^2} + {q^2}} \right)/\left( {{r^2} + {s^2}} \right) = \left( {pq} \right)/\left( {rs} \right)$, then what is the value of $\left( {p - q} \right)/\left( {p + q} \right)$ in terms of $r$ and $s$?
If $ \displaystyle \frac {1}{x} : \frac {1}{y} : \frac {1}{z} = 2:3:5, $ then $x:y:z =?$