0

Proving the mid-point theorem - class-IX

Description: proving the mid-point theorem
Number of Questions: 30
Created by:
Tags: special types of quadrilaterals maths quadrilateral quadrilaterals mid-point and its converse
Attempted 0/30 Correct 0 Score 0

State true or false:

$ D, E $ and $ F $ are the mid-points of the sides $ AB, BC $ and  $ CA $ of an isosceles $ \bigtriangleup ABC $  in which $ AB= BC $. then
 $ \bigtriangleup DEF $  is also isosceles.

  1. True

  2. False


Correct Option: A
Explanation:

AB = AC
Hence, $\angle ABC = \angle ACB$ (Isosceles triangle property)
Now, since, D and F are mid point of AB and AC respectively, thus DF II BC (Mid point theorem)
Hence, 
$\angle ADF = \angle ABC$ and $\angle AFD = \angle ACB$ (Corresponding angles)
Thus, 
$\angle ADF = \angle ABC = \angle AFD = \angle ACB$ 
Now, In $\triangle$ ADF and FEC
$\angle ADF = \angle FEC$ (Corresponding angles of parallel lines EF and AB)
$\angle AFD = \angle ACB $(Corresponding angles of parallel lines DF and BC)
AF = FC (F is the mid point of AC)
Thus $\triangle ADF \cong \triangle FEC$ (AAS rule)
Hence, AD = FE (corresponding sides of congruent triangles)
Similarly, we can prove, AF = DE
Since, AD = AF (half lengths of equal sides, AB and AC)
Thus, EF = DE or $\triangle$ DEF is an isosceles triangle.

In $\Delta ABC$, D and E are mid points of AB and BC respectively and $\angle ABC=90^o$, then

  1. $AE^2+CD^2=AC^2$

  2. $AE^2+CD^2=\frac {5}{4}AC^2$

  3. $AE^2+CD^2=\frac {3}{4}AC^2$

  4. $AE^2+CD^2=\frac {4}{5}AC^2$


Correct Option: B

Find the midpoint of the segment connecting the points $(a, -b)$ and $(5a, 7b)$.

  1. $(3a, -3b)$

  2. $(2a, -3b)$

  3. $(3a, -4b)$

  4. $(-2a, 4b)$

  5. none of these


Correct Option: D
Explanation:

The mid point is $(\dfrac{a-5a}2,\dfrac{b+7b}2)$.i.e $(-2a,4b)$
Option D is correct.

Fill in the blanks:
(i) The ling segment joining a vertex of a triangle to the midpoint of its opposite side is called a $\underline { P } $ of the triangle.
(ii) The perpendicular line segment from a vertex of a triangle to its opposite is called an $\underline { Q } $ of the triangle
(iii) A triangle has $\underline { R } $ altitudes and $\underline { S } $ medians

  1. $P-$ Altitude; $Q$- Median; $R-1$; $S-1$

  2. $P-$ Altitude; $Q$- Median; $R-3$; $S-3$

  3. $P-$ Median; $Q$- Altitude; $R-3$; $S-3$

  4. $P-$ Median; $Q$- Altitude; $R-2$; $S-3$


Correct Option: C
Explanation:

Medians : The line segment from any vertex of a triangle to the midpoint of its opposite side is called medians of triangle. 

Altitude : The perpendicular drawn from a vertex to opposite side is called as altitude. 
A triangle has $3$ altitudes & $3$ medians.

If a line divides any two sides of a triangle in the same ratio, then the line is parallel to the _______ side.

  1. first

  2. second

  3. third

  4. none of the above


Correct Option: C
Explanation:

If a line divides any two sides of a triangle in the same ratio, then the line is parallel to the third side.

Fill in the blank:

Line joining the mid-points of any two sides of a triangle is _____ to the third side.

  1. perpendicular

  2. parallel

  3. Inclined at $60^o$

  4. None of these


Correct Option: B
Explanation:

Line joining the mid-points of any two sides of a triangle is parallel to the third side. 

This is the standard Midpoint theorem of a triangle.

If the lengths of the medians $AD, BE$ and $CF$ of the triangle $ABC$, are $6,8,10$ respectively, then

  1. $AD$ and $BE$ are perpendicular

  2. $BE$ and $CF$ are perpendicular

  3. area of $\Delta ABC=32$

  4. area of $\Delta DEF=8$


Correct Option: D
Explanation:

$\begin{array}{l}AD = \sqrt {2A{B^2} + 2A{C^2} - B{C^2}}  = 6\2A{B^2} + 2A{C^2} - B{C^2} = 36\BE = \sqrt {2A{B^2} + 2B{C^2} - A{C^2}}  = 8\2A{B^2} + 2B{C^2} - A{C^2} = 64\CF = \sqrt {2A{C^2} + 2B{C^2} - A{B^2}}  = 10\2A{C^2} + 2B{C^2} - A{B^2} = 100\A{B^2} = x\A{C^2} = y\B{C^2} = z\2x + 2y - z = 36\2x + 2z - y = 64\2y + 2z - x = 100\x = A{B^2} = \frac{{100}}{9}\y = A{C^2} = \frac{{208}}{9}\z = B{C^2} = \frac{{292}}{9}\AD = 6,BE = 8,CF = 10\in,\Delta ABE\AD \bot BE\area,\Delta BEC = 16\area,\Delta ABE = 16 + 16 = 32\\frac{{area,\Delta ABE}}{{area,\Delta DEF}} = 4\\frac{{32}}{{area,\Delta DEF}} = 4\area,\Delta DEF = 8\end{array}$

In $\triangle ABC , \angle B=90^0$ and D is the mid-point of BC then
$BC^2=4(AD^2-AB^2)$

  1. True

  2. False


Correct Option: A
The area of rectangle ABCD with vertices A (0,0), B (5,0), C (5, 6) and D (0,6) is 
  1. $25cm^2$

  2. $20cm^2$

  3. $30cm^2$

  4. None of these.


Correct Option: C
Explanation:

The vertices of rectangle are $A(0,0),B(5,0),C(5,6),D(0,6)$

From the points 

$\implies $ Length $=6-0=6$

$\implies $ Breadth $=5-0=5$

Area of rectangle is $5\times 6=30$

If a line cuts sides $BC, CA$ and $AB$ of $\triangle ABC$ at $P, Q, R$ respectively then " $\dfrac {BP}{PC}\cdot \dfrac {CQ}{QA}\cdot \dfrac {AR}{RB} = 1$. "  that statement is ?

  1. True

  2. False


Correct Option: A

In a triangle $ABC,D$ and  $E$ are the mid-points of $BC,CA$ respectively. If $AD=5,BC=BE=4$, then $CA=$

  1. $5$

  2. $\sqrt{7}$

  3. $2\sqrt{7}$

  4. $5\sqrt{5}$


Correct Option: C

Tangents PA and PB drawn to $ x^2+y^2=9 $ from any arbitrary point 'P ' on the line $ x+y=25 $. Locus of midpoint of chord AB is

  1. $ 25(x^2+y^2)=9(x+y) $

  2. $ 25(x^2+y^2)=3(x+y) $

  3. $ 5(x^2+y^2)=3(x+y) $

  4. None of these


Correct Option: A
Explanation:

Let the point on the line $x+y=25$ be $P(a,b)$
Thus equation of chord of contact AB from point P to the circle is given by,
$T  =0 \Rightarrow ax+by = 9$  (i)
Let mid point of AB be $R(h,k)$.
Now equation of chord AB with mid point R is given by,
$T = S _1 \Rightarrow hx+ky = h^2+k^2$ (ii)
Both line (i) and (ii) represents the same line AB
$\therefore \displaystyle \frac{a}{h}=\frac{b}{k} = \frac{9}{h^2+k^2}$
$\Rightarrow  a=\cfrac{9h}{h^2+k^2}, b = \cfrac{9k}{h^2+k^2}$
Also point $(a,b)$ lie on the line $x+y = 25$
$\Rightarrow a+b = 25 \Rightarrow 25(h^2+k^2) = 9(h+k)$
Hence required locus of $R(h,k)$ is given by, $25(x^2+y^2) = 9(x+y)$

If $m {a},\ m _{b},\ m _{c}$ are lengths of medians through the vertices $A,B, C$ of $\triangle ABC$ respectively, then length of side $b=$___ 

  1. $\sqrt { { 2m } _{ a }^{ 2 }+{ 2m } _{ c }^{ 2 }-{ 2m } _{ b }^{ 2 } } $

  2. $\dfrac { 1 }{ 3 } \sqrt { { 2m } _{ a }^{ 2 }+{ 2m } _{ c }^{ 2 }-{ 2m } _{ b }^{ 2 } }$

  3. $\dfrac { 2 }{ 3 } \sqrt { { 2m } _{ a }^{ 2 }+{ 2m } _{ c }^{ 2 }-{ 2m } _{ b }^{ 2 } }$

  4. $\dfrac { 3 }{ 4 } \sqrt { { 2m } _{ a }^{ 2 }+{ 2m } _{ c }^{ 2 }-{ 2m } _{ b }^{ 2 } }$


Correct Option: D

If the diagonals $KT$ and $EI$ of a parallelogram $KITE$ intersect at $O$ and $P,Q,R$ and $S$ are the midpoints of $KO,EO,TO$ and $IO$ respectively then the ratio of $(PQ+QR+RS+SP)$ to $(KE+ET+TI+IK)$ is

  1. $1:4$

  2. $1:3$

  3. $1:1$

  4. $1:2$


Correct Option: A

In $\triangle ABC, D, E$ and $F$ are the mid points of $BC, CA$ and $AB$ respectively, then, $BDEF$=________$ABC$

  1. $2$

  2. $\dfrac{1}{2}$

  3. $\dfrac{1}{4}$

  4. $\dfrac{31}{4}$


Correct Option: A

Consider $\Delta$ABC and $\Delta A {1}B _{1}C _{1}$ in such a way that $\bar { AB } =\bar { { A } _{ 1 }{ B } _{ 1 } } $ and M,N,$M _{1}N _{1}$ be that mid points of AB,BC, $A _{1}B _{1}$ and $B _{1}C _{1}$ respectively, then ____________.

  1. $\bar { M{ M } _{ 1 } } =\bar { NN _{ 1 } } $

  2. $\bar { { CC } _{ 1 } } =\bar { MM _{ 1 } } $

  3. $\bar { { CC } _{ 1 } } =\bar { NN _{ 1 } } $

  4. $\bar { { MM } _{ 1 } } =\bar { BB _{ 1 } } $


Correct Option: A

A triangle ABC in which AB=AC, M is a point on AB and N is a point on AC such that if BM=CN then AM=AN

  1. True

  2. False


Correct Option: A
Explanation:

Since M is a midpoint on AB and N is a midpoint on AC, we have

$ AB = AM

+ MB $   and $ AB = AN + NC $

Since, $

AB = AC $

$ =>

AM + MB = AN + NC $

$

=>  AM = AN $

In triangle $ ABC $, $ M $ is mid-point of $ AB $ and a straight line through $ M $ and parallel to $ BC $ cuts $ AC $ in $ N $. Find the lenghts of $ AN $ and $ MN $ if $ BC= 7 $ cm and $ AC= 5 $ cm.

  1. $ AN= 2.5 $ cm and $ MN= 3.5 $ cm

  2. $ AN= 1.5 $ cm and $ MN= 3.5 $ cm

  3. $ AN= 2.5 $ cm and $ MN= 4.5 $ cm

  4. none of the above


Correct Option: A
Explanation:

M is the mid point of AB and MN II BC. Thus, N is the mid point of AC and


$MN = \dfrac{1}{2} BC$ (Mid point theorem)

$MN = \dfrac{1}{2} (7) $

$MN = 3.5 cm$

Also, $AN = \dfrac{1}{2} AC$

$AN = \dfrac{1}{2} (5)$

$AN = 2.5 cm$

State true or false:

In triangle  $ ABC  $,  $ P  $ is the mid-point of side  $ BC  $. A line through $ P  $ and Parallel to  $ CA  $ meets  $ AB  $ at point  $ Q  $; and a line through  $ Q  $ and parallel to  $ BC $ meets median  $ AP  $ at point  $ R  $. Can it be concluded that,
$ AP= 2AR $ ?

  1. True

  2. False


Correct Option: A
Explanation:

Given: $\triangle ABC$, P is mid point of BC, $QR \parallel BC$ and $PQ \parallel AC$

Since, $ PQ \parallel AC$ and P is mid point of BC, thus, by converse of mid point theorem
Q is mid point of AB.

Now, In $\triangle ABP$
Since, $QR \parallel BP$ and Q is mid point of AB. thus, by converse of Mid point theorem
R is mid point of AP.
Hence, $AP = 2 AR$

State true or false:


In triangle $ ABC $, angle $ B $ is obtuse. $ D $ and $ E $ are mid-points of sides $ AB $ and $ BC $ respectively and $ F $ is a point in side $ AC $ such that $ EF $ is parallel to $ AB $. Then, $ BEFD $ is a parallelogram. 

  1. True

  2. False


Correct Option: A
Explanation:

Given: $D$ is mid point of $AB$ and $E$ is mid point of $BC$, $F$ is any point on $AC$ and $EF \parallel AB$

Now, in $\triangle ABC$,
E is mid point of BC and $EF \parallel AB$
By Mid point Theorem, $F$ is mid point of $AC$

Also, D is mid point of AB and F is mid point of AC
Hence, by mid point theorem, $DF \parallel BE$
Since, $DF \parallel BE$ and $EF \parallel AB or BD$
Hence, BEFD is parallelogram.

In $\bigtriangleup : ABC$ , $E$ and $F$ are mid-points of sides $AB$ and $AC$ respectively. If $BF$ and $CE$ intersect each other at point $O$, then the $\bigtriangleup :OBC$ and quadrilateral $AEOF$ are equal in area.

  1. True

  2. False


Correct Option: A
Explanation:

Given that $E$ and $F$ are mid points. We have to prove that ${a} _{1}(BOC)={a} _{1}(AEOF)$

As $EF\parallel BC$ (By midpoint theorem.)
${ a } _{ 1 }(\triangle BEF)={ a } _{ 1 }(\triangle ACFE)$  ($\because $ Between the parallel lines.)
${ a } _{ 1 }(\triangle BEF)-{ a } _{ 1 }(\triangle EOF)={ a } _{ 1 }(\triangle CFE)-{ a } _{ 1 }(\triangle EOF)\ \therefore { a } _{ 1 }(\triangle BOE)={ a } _{ 1 }(\triangle FOC)\longrightarrow (i)$
${a} _{1}(AEOF)={a} _{1}(BOC)$
$\therefore$ The statement is true.

If $D, E, F$ are respectively the midpoints of the sides $AB, BC, CA$ of $\Delta ABC$ and the area of $\Delta ABC$ is $24\ sq.\ cm$, then the area of $\Delta DEF$ is:

  1. $24\ {cm}^{2}$

  2. $12\ {cm}^{2}$

  3. $8\ {cm}^{2}$

  4. $6\ {cm}^{2}$


Correct Option: D
Explanation:

Given: 

$\Delta ABC,\ \ D, E$ and $F$ are mid points of $AB, BC, CA$ respectively.

In $\Delta ABC$
$F$ is mid point of $AC$ and $D$ is mid point of $AB$. 
Thus, by Mid point theorem, we get
$FD = \dfrac{1}{2} CB$, 
$FD = CE$ and $FD \parallel CE$     ...(1)
Similarly,
$DE =  FC$ and $DE \parallel FC$   ...(2)
$FE = DB$ and $FE \parallel DB$    ...(3) 

From (1), (2) and (3)
$\Box ADEF$, $\Box DBEF$, $\Box DECF$ are parallelograms.

The diagonal of a parallelogram divides the parallelogram into two congruent triangles.
Hence, $\Delta DEF \cong \Delta ADF$
$\Delta DEF \cong \Delta DBE$
$\Delta DEF \cong \Delta FEC$
Or, $\Delta DEF \cong \Delta ADF \cong \Delta ECF \cong \Delta ADF$
Thus, mid points divide the triangle into $4$ equal parts.

Now, 
$A (\Delta DEF) = \dfrac{1}{4} A (\Delta ABC)$

$A (\Delta DEF) = \dfrac{1}{4} (24)$

$A (\Delta DEF) = 6\ {cm}^2$

Hence, option D.

Suppose the triangle ABC has an obtuse angle at C and let D be the midpoint of side AC Suppose E is on BC such that the segment DE is parallel to AB. Consider the following three statements
i) E is the midpoint of BC
ii) The length of DE is half the length of AB
iii) DE bisects the altitude from C to AB

  1. only (i) is true

  2. only (i) and (ii) are true

  3. only (i) and (iii) are true

  4. all three are true


Correct Option: D
Explanation:

The triangle ABC has height h and base l,
E is the midpoint of BC, line parallel to the base will be interect the triangle at the midpoint of the opposite side.
Triangle ADE is similar to triangle ABC, as all 3 angles are equal.
Therefore, the altitude of ADE is half of ABC, and DE will be half of BC.

Let $ABC$ be a triangle and let $P$ be an interior point such that $\angle BPC = 90$, $\angle BAP = \angle BCP$. Let $M, N$ be the mid-points of $AC, BC$ respectively. Suppose $BP = 2PM$. Then $A, P, N$ are collinear ?

  1. True

  2. False


Correct Option: A

If $\displaystyle \Delta ABC$ is an isosceles triangle and midpoints $D, E,$ and $F$ of $AB, BC,$ and $CA$ respectively are joined, then $\displaystyle \Delta DEF$ is:

  1. Equilateral

  2. Isosceles

  3. Scalene

  4. Right-angled


Correct Option: B
Explanation:

Given: In $\triangle ABC, D, E$ and $F$ are midpoints of sides $AB, BC$ and $CA$.

$BE=EC$
$\therefore DF=\dfrac { 1 }{ 2 } BC$
$\therefore \dfrac { DF }{ BC } =\dfrac { 1 }{ 2 }$ ....... $\left( 1 \right) $

Similarly, $ \dfrac { DE }{ AC } =\dfrac { 1 }{ 2 } $ and $ \dfrac { EF }{ AB } =\dfrac {1 }{ 2 } $

$\Rightarrow \dfrac { DF }{ BC } =\dfrac { DE }{ AC } =\dfrac { EF }{ AB } =\dfrac { 1 }{ 2 } $
$\triangle ABC$ is propotional to $\triangle DEF$ as the sides of the triangles are proportional. 
So corresponding angles are equal.
Hence, $\triangle ABC\sim \triangle EDF$ [by SSS similarly theorm]
$\therefore \triangle DEF$ is isosceles.

M is the midpoint of $\displaystyle\overline{AB}$. The coordinates of A are $(-2,3)$ and the coordinates of M are $(1,0)$. Find the coordinates of B.

  1. $(-1/2, 3/2)$

  2. $(4,-3)$

  3. $(-4,3)$

  4. $(-5,6)$

  5. none of these


Correct Option: B
Explanation:

Let $(x,y)$ be the coordinates of B.
According to question, M is mid point of A and B.
$\Rightarrow \dfrac{-2+x}2=1\Rightarrow x=4$
and $ \dfrac{3+y}2=0\Rightarrow y=-3$
Therefore B is $(4,-3)$
Option B is correct.

The straight line joining the mid-points of the opposite sides of a parallelogram divides it into two parallelogram of equal area  

  1. True

  2. False


Correct Option: A

In a $\triangle DEF$; $A,B$ and $C$ are the mid-points of $EF,FD$ and $DE$ respectively. If the area of $\triangle DEF$ is $14.4{ cm }^{ 2 }$, then find the area of $\triangle {ABC}$.

  1. $1.75$cm

  2. $2.54$cm

  3. $3.2$cm

  4. $3.6$cm


Correct Option: D
Explanation:

Fact: Using mid-point theorem $\dfrac{\Delta{DEF}}{\Delta{ABC}}=4$


Here $\Delta{DEF}=14.4$ cm$^2$ is given 
Hence are of triangle $ABC $ is given by $ \dfrac{14.4}{4}=3.6$ cm$^2$ 

In a $\triangle ABC$, if $D, E, F$ are the midpoints of the sides $BC, CA, AB$ respectively then $\overline {AD} + \overline {BE} + \overline {CF} =$

  1. $\overline {0}$

  2. $\overline {AE}$

  3. $\overline {BD}$

  4. $\overline {CE}$


Correct Option: A

A cross section at the midpoint of the middle piece of a human sperm will show

  1. Centriole, mitochondria and 9 +2 arrangement of microtubules.

  2. Centriole and mitochondria

  3. Mitochondria and 9+2 arrangement of microtubules.

  4. 9+2 arrangement of microtubules only.


Correct Option: C
Explanation:

The middle piece is the tubular structure in which mitochondria are spirally arranged and it also has the beginning part of the flagellum. The sperm tail or the flagellum is based upon unique 9+2 arrangement. This arrangement refers to the nine peripheral, symmetrically arranged microtubule doublets.
Thus, the cross-section of the middle piece of sperm will show mitochondria and 9+2 arrangement of microtubules.
Hence, the correct answer is option (C), 'Mitochondria and 9+2 arrangement of microtubules'.

- Hide questions