0

Comparison of numbers - class-VIII

Description: comparison of numbers
Number of Questions: 29
Created by:
Tags: concepts of seven and eight digit numbers maths numbers operations on rational numbers
Attempted 0/29 Correct 0 Score 0

A data has highest value $120$ and the lowest value $71.A$ frequency distribution in descending order with seven classes is to be constructed. The limits of the second class interval shall be 

  1. $77$ and $78$

  2. $78$ and $85$

  3. $85$ and $113$

  4. $113$ and $120$


Correct Option: D
Explanation:
Range of Frequency distribution=Highest Value-Lowest value
 $=120-71=49$

Dividing this into Seven $(7)$ equal classes.

$\Rightarrow \dfrac{49}{7}=7$

Thus the class width should be 7

Now  arranging  in descending order

Class interval $1 \rightarrow (120-7) to\space 120 \rightarrow 113-120$

Class interval $2 \rightarrow (113-7) to \space 113 \rightarrow 106-113$

Hence class interval $1$ and $2$ is $113$ and $120$ 

Arrange the following fractions is ascending order :
$\dfrac{7}{10},\dfrac{3}{8},\dfrac{4}{5}$

  1. $\dfrac{3}{8},\dfrac{7}{10},\dfrac{4}{5}$

  2. $\dfrac{3}{8},\dfrac{4}{5},\dfrac{7}{10}$

  3. $\dfrac{4}{5},\dfrac{3}{8},\dfrac{7}{10}$

  4. $\dfrac{7}{10},\dfrac{3}{8},\dfrac{4}{5}$


Correct Option: A
Explanation:
$7/10= 0.7$
$3/8 = 0.375$
$4/5=0.8$

So ascending order, = $\dfrac 3 8, \dfrac 7 {10}, \dfrac 4 5$

Arrange the following rational number in ascending order $\displaystyle \frac{3}{7},\frac{4}{5},\frac{7}{9},\frac{1}{2}$

  1. $\displaystyle \frac{4}{5},\frac{7}{5},\frac{3}{9},\frac{1}{2}$

  2. $\displaystyle \frac{3}{7},\frac{1}{2},\frac{7}{9},\frac{4}{5}$

  3. $\displaystyle \frac{4}{5},\frac{7}{9},\frac{1}{2},\frac{3}{7}$

  4. $\displaystyle \frac{1}{2},\frac{3}{7},\frac{7}{9},\frac{4}{5}$


Correct Option: B
Explanation:

The LCM of 2, 5, 7 and 9 is 630.
$\frac{3}{7} = \frac{270}{630}$
$\frac{4}{5} = \frac{504}{630}$
$\frac{7}{9}=\frac{490}{630}$
$\frac{1}{2}=\frac{315}{630}$
The ascending order will be $\frac{3}{7},\frac{1}{2},\frac{7}{9},\frac{4}{5}$

Arrange in ascending order of magnitude $\sqrt 3, \sqrt [5]{15}, \sqrt [10]{227}$

  1. $\sqrt [5]{15} < \sqrt [10]{227} < \sqrt 3$

  2. $\sqrt 3 < \sqrt [5]{15} < \sqrt [10]{227}$

  3. $\sqrt [10]{227} < \sqrt 3 < \sqrt [5]{15}$

  4. None of these


Correct Option: A
Explanation:

$\sqrt 3, \sqrt [5]{15}, \sqrt [10]{227}$


LCM of $2, 5$ and $10=10$

$\sqrt 3=\sqrt [2\times 5]{3^5}=\sqrt [10]{3\times 3\times 3\times 3\times 3}=\sqrt [10]{243}$

$\sqrt [5]{15}=\sqrt [5\times 2]{15^2}=\sqrt [10]{15\times 15}=\sqrt [10]{225}$

$\sqrt [10]{227}=\sqrt [10]{227}$

$\therefore \sqrt [5]{15} < \sqrt [10]{227} < \sqrt 3$

Arrange the given fractions in ascending order:

$\displaystyle\frac{2}{7}$, $\displaystyle\frac{4}{5}$, $\displaystyle\frac{3}{4}$

  1. $\displaystyle\frac{4}{5}$, $\displaystyle\frac{3}{4}$, $\displaystyle\frac{2}{7}$

  2. $\displaystyle\frac{4}{5}$, $\displaystyle\frac{2}{7}$, $\displaystyle\frac{3}{4}$

  3. $\displaystyle\frac{2}{7}$, $\displaystyle\frac{3}{4}$, $\displaystyle\frac{4}{5}$

  4. $\displaystyle\frac{3}{4}$, $\displaystyle\frac{2}{7}$, $\displaystyle\frac{4}{5}$


Correct Option: C
Explanation:

First, we make all divisors common.
So l.c.m of $7,5,4 = 140$


Now $\dfrac{2}{7}\times \dfrac{20}{20} = \dfrac{40}{140}$

$\dfrac{4}{5}\times \dfrac{28}{28} = \dfrac{112}{140}$

$\dfrac{3}{4}\times \dfrac{35}{35} = \dfrac{102}{140}$

So the order will be $\displaystyle\frac{2}{7}$, $\displaystyle\frac{3}{4}$, $\displaystyle\frac{4}{5}$

Which one of the following is correct?

  1. $\dfrac {-7}{10} < \dfrac {-2}{3} < \dfrac {-5}{8}$

  2. $\dfrac {-5}{8} < \dfrac {-2}{3} < \dfrac {-7}{10}$

  3. $\dfrac {-5}{8} < \dfrac {-7}{10} < \dfrac {-2}{3}$

  4. $\dfrac {-7}{10} < \dfrac {-5}{8} < \dfrac {-2}{3}$


Correct Option: A

Arrange in descending order:
$6,00,780;  5,56,879; 6,87,340; 4,76,980$

  1. $4,76,980; 6,00,780; 5,56,879; 6,87,340; $

  2. $5,56,879;6,00,780; 6,87,340; 4,76,980$

  3. $ 6,87,340; 6,00,780;5,56,879; 4,76,980$

  4. $6,00,780; 6,87,340; 4,76,980; 5,56,879;$


Correct Option: C
Explanation:

Comparing digits at lakh's place followed by ten thousand's, thousand's, hundred's, ten's and one's place,


We can arrange the given numbers in descending order as 
$6,87,340;\ 6,00,780;\ 5,56,879;\ 4,76,980$

Arrange in ascending  order:
$9,78,654;  8,78,654;  9,56,236;  9,54,234$

  1. $9,78,654; 8,78,654; 9,56,236; 9,54,234$

  2. $ 8,78,654; 9,56,236; 9,54,234; 9,78,654$

  3. $ 8,78,654; 9,54,234; 9,56,236; 9,78,654$

  4. $ 9,54,234; 9,56,236; 9,78,654; 8,78,654$


Correct Option: C
Explanation:

Comparing digits at lakh's place followed by ten thousand's, thousand's, hundred's, ten's and one's place,


We can arrange the given numbers in ascending order as 
$8,78,654;\ 9,54,234;\ 9,56,236;\ 9,78,654$

Arrange in ascending order:
$12,098; 12,908; 12,809; 12,890$

  1. $12,098; 12,908; 12,809; 12,890$

  2. $12,098;12,809; 12,890; 12,908;$

  3. $12,098;12,890; 12,908; 12,809$

  4. $12,890; 12,908; 12,809; 12,098$


Correct Option: B
Explanation:

Comparing digits at ten thousand's place followed by thousand's, hundred's, ten's and one's place,


We can arrange the given numbers in ascending order as 
$12,098; 12,809; 12,890; 12,908$

Arrange in ascending order:
$1,234; 2,345; 6,784; 1,543$

  1. $1,234; 2,345; 6,784; 1,543$

  2. $1,234; 1,543; 2,345; 6,784$

  3. $1,543; 1,234;2,345; 6,784$

  4. $1,543; 1,234; 6,784; 2,345$


Correct Option: B
Explanation:

Comparing digits at thousand's place followed by hundred's, ten's and one's place,


We can arrange the given numbers in ascending order as 
$1,234; 1,543; 2,345; 6,784$

Which of the following decimals are arranged in ascending order?

  1. $0.5, 0.42, 0.382$

  2. $11.001, 11.1, 11.21$

  3. $20.3, 30.02, 23.25$

  4. $8.9, 8.86, 8.094$


Correct Option: B
Explanation:
Ascending order means increasing the order of a series, sequence or pattern.

Option A= $0.5>0.42>0.382$ : Numbers are in descending order
Option B= $11.001<11.1<11.21$ : Numbers are in ascending order
Option C= $20.3<30.02>23.25$ : Numbers are not in proper order
Option D= $8.9>8.86>8.094$ :Numbers are in descending order.

Option $B$ is the correct answer.

Which of the following fractions are in order from the least to the greatest?

  1. $\dfrac {1}{2}, \dfrac {2}{3}, \dfrac {2}{6}$

  2. $\dfrac {1}{2}, \dfrac {2}{6}, \dfrac {2}{3}$

  3. $\dfrac {2}{6}, \dfrac {2}{3}, \dfrac {1}{2}$

  4. $\dfrac {2}{6}, \dfrac {1}{2}, \dfrac {2}{3}$


Correct Option: D
Explanation:

First convert the given fractions into like fractions.
L.C.M. of $2, 3, 6 = 6$
So,
$\dfrac {1}{2} = \dfrac {1\times 3}{2\times 3} = \dfrac {3}{6}; \dfrac {2}{3} = \dfrac {2\times 2}{3\times 2} = \dfrac {4}{6}; \dfrac {2}{6} = \dfrac {2\times 1}{6\times 1} = \dfrac {2}{6}$
So, ascending order is,
$\dfrac {2}{6}, \dfrac {3}{6}, \dfrac {4}{6}$ i.e. $\dfrac {2}{6}, \dfrac {1}{2}, \dfrac {2}{3}$.

Smallest $6$-digit number that can be formed using $9,2,6,0,3,1$ (using each digit only once) is _________ .

  1. $012369$

  2. $102369$

  3. $106239$

  4. $103269$


Correct Option: B
Explanation:

To find the smallest digit start arranging the numbers in ascending order.

However, $0$ cannot be the first or else the number would become $5$ digit.
Therefore, $102369$ is the correct answer.

Which of the following options is arranged in descending order?

  1. $7,39,154$; $7,93,154$; $1,73,541$; $7,93,951$

  2. $8,50,76,745$; $8,50,76,547$; $8,50,67,574$; $8,50,67,547$

  3. $4,76,098$; $4,87,678$; $76,908$; $87,876$

  4. $3,15,45,001$; $3,51,54,100$; $4,15,45,001$; $5,25,45,010$


Correct Option: B
Explanation:

The correct descending orders are


1) $7,93,951 > 7,93,154 > 7,39,154 > 1,73,541$


2) $8,50,76,745 > 8,50,76,547 > 8,50,67,574 > 8,50,67,547$

3) $4,87,678 > 4,76,098 > 87,876 > 76,908$

4) $5,25,45,010 > 4,15,45,001 > 3,51,54,100 > 3,15,45,001$

Hence option B has the correct sequence of descending order.

The ascending order of XX, XXXVI, V is ________.

  1. V, XXXVI, XX

  2. XX, V, XXVI

  3. V, XX, XXXVI

  4. XXXVI, XX, V


Correct Option: C
Explanation:

The ascending order of XX, XXXVI, V is V, XX, XXXVI

Which of the following is ninth to the right of the seventeenth from the right end of the given arrangement?

M O K T % J 9 I B @ 8 $\circledS$ C # F 1 V 7 $\Box$ 2 E G 3 Y 5 $ 6 T

  1. E

  2. %

  3. I

  4. Y


Correct Option: A
Explanation:

For the given arrangement we can see that the $17$ th no from right end is $\circledS$, 

and we can easily see that $9$ th no from the right of the $17$ th element from the right is E .

If the digits of the number $5726489$ are arranged in ascending order, then how many digits will remain at the same position?

  1. None

  2. One

  3. Two

  4. Three


Correct Option: D
Explanation:

The given number is $5726489$.


After arranging digits of number in ascending order the number becomes $2456789$

Now, we can see after arranging number in ascending order digits $6,8$ and $9$ remain at the same position.

$\therefore$  $3$ digits will  remain at the same position.

Write the following rational numbers in ascending order:

$\dfrac{3}{4},\dfrac{7}{12}, \dfrac{15}{11}, \dfrac{22}{19}, \dfrac{101}{100}, \dfrac{-4}{5}, \dfrac{-102}{81}, \dfrac{-13}{7}$.

  1. $\dfrac{-13}{7},\dfrac{-102}{81}, \dfrac{-4}{5}, \dfrac{22}{19}, \dfrac{101}{100}, \dfrac{15}{11}, \dfrac{7}{12}, \dfrac{3}{4}$.

  2. $\dfrac{-13}{7},\dfrac{-102}{81}, \dfrac{-4}{5}, \dfrac{7}{12}, \dfrac{3}{4}, \dfrac{22}{19}, \dfrac{101}{100}, \dfrac{15}{11}$.

  3. $\dfrac{-13}{7},\dfrac{-102}{81}, \dfrac{-4}{5}, \dfrac{7}{12}, \dfrac{3}{4}, \dfrac{101}{100}, \dfrac{22}{19}, \dfrac{15}{11}$.

  4. $\dfrac{3}{4},\dfrac{7}{12}, \dfrac{15}{11}, \dfrac{22}{19}, \dfrac{101}{100}, \dfrac{-4}{5}, \dfrac{-102}{81}, \dfrac{-13}{7}$.


Correct Option: C

If the following numbers  are arranged in ascending order, what will be the middle number?
$687,\ 789,\ 648,\ 693,\ 672$

  1. 687

  2. 789

  3. 693

  4. 672


Correct Option: A
Explanation:

Given numbers in ascending order is, 


$648, 672, 687, 693, 789$


It can be clearly seen that middle number is $687.$ 

Among $\dfrac{5}{6},\dfrac{5}{7}$ and $\dfrac{5}{8}$, the greatest fraction is 

  1. $\dfrac{5}{6}$

  2. $\dfrac{5}{7}$

  3. $\dfrac{5}{8}$

  4. None of these


Correct Option: A
Explanation:
Since all the fractions having same numarator so the greatest fraction will one with lowest denominator
 So the greatest fraction is $\dfrac{5}{6}$

Arrange in ascending order $\sqrt [ 6 ]{ 7 } ,\sqrt [ 4 ]{ 3 } ,\sqrt [ 12 ]{ 48 } $

  1. $\sqrt [ 4 ]{ 3 } ,\sqrt [ 12 ]{ 48 } ,\sqrt [ 6 ]{ 7 } $

  2. $\sqrt [ 12 ]{ 48 } ,\sqrt [ 4 ]{ 3 } ,\sqrt [ 6 ]{ 7 } $

  3. $\sqrt [ 6]{ 7 } ,\sqrt [ 12 ]{ 48 } ,\sqrt [ 4 ]{ 3 } $

  4. $None\ of\ these$


Correct Option: A

The ascending order of minimum values of the function  $P:\sin ^{ -1 }{ x } -\cos ^{ -1 }{ x } $, $Q=\tan ^{ -1 }{ x } -\cot ^{ -1 }{ x } $, $R=\sec ^{ -1 }{ x } -\csc ^{ -1 }{ x } $

  1. P, Q, R

  2. P, R, Q

  3. Q, P, R

  4. Q, R, P


Correct Option: A

The value of $1+\dfrac{1}{4\times 3}+\dfrac{1}{4\times 3^2}+\dfrac{1}{4\times 3^3}+\dfrac{1}{4\times 3^4}$ is?

  1. $\dfrac{121}{108}$

  2. $\dfrac{3}{2}$

  3. $\dfrac{31}{2}$

  4. $\dfrac{91}{81}$


Correct Option: D
Explanation:

$1+\dfrac{1}{4\times 3}+\dfrac{1}{4\times 3^2}+\dfrac{1}{4\times 3^3}+\dfrac{1}{4\times 3^4}$


$=1+\dfrac{1}{12}+\dfrac{1}{36}+\dfrac{1}{108}+\dfrac{1}{324}$


$=\dfrac{324+27+9+3+1}{324}$

$=\dfrac{364}{324}$

$=\dfrac{91}{81}$

Hence, the answer is $\dfrac{91}{81}.$

The ascending order of $\sqrt { 2 } ,\sqrt [ 3 ]{ 4 } ,\sqrt [ 4 ]{ 6 } $ is

  1. $\sqrt { 2 } ,\sqrt [ 3 ]{ 4 } ,\sqrt [ 4 ]{ 6 } $

  2. $\sqrt { 2 } ,\sqrt [ 4 ]{ 6 } ,\sqrt [ 3 ]{ 4 } $

  3. $\sqrt [ 3 ]{ 4 }, \sqrt {2},\sqrt [ 4 ]{ 6 } $

  4. $\sqrt [ 4 ]{ 6 },\sqrt [ 3 ]{ 4 } ,\sqrt {2}$


Correct Option: A

Find the rational numbers between the following numbers. 

$-0.2$ and $-0.22$.

  1. $-0.210 > -0.211 > -0.312 > -0.213 > -0.314 > 0.220$

  2. $-0.210 > -0.211 > -0.212 > -0.213 > -0.314 > 0.220$

  3. $-0.210 > -0.211 > -0.312 > -0.213 > -0.214 > 0.220$

  4. $-0.210 > -0.211 > -0.212 > -0.213 > -0.214 > 0.220$


Correct Option: D
Explanation:

Rational number between two numbers $ a $ and $ b = \dfrac {(a +

b)}{2} $

So,
a rational number between $ -0.2 $ and $ - 0.22 = \dfrac {(-0.2 - 0.22)}{2} = -0.21 $

Now, another rational number
between $ -0.21 $ and $ - 0.22 = \dfrac {(-0.21 - 0.22)}{2} = -0.215 $

rational number between $ -0.215 $ and $ - 0.21 = \dfrac {(-0.215 - 0.21)}{2} = -0.212 $ 

rational number between $ -0.215 $ and $ - 0.212 = \dfrac {(-0.215 - 0.212)}{2} = -0.213 $ 

rational number between $ -0.215 $ and $ - 0.213 = \dfrac {(-0.215 - 0.213)}{2} = -0.214 $ 

Similarly,
rational numbers between $ -0.2 $ and $ - 0.22 $ are $-0.210, -0.211 , -0.212, -0.213 , -0.214$ etc

Find the five rational numbers between $-5$ and $-6$

  1. $-5.1 ,-5.2 , -3.3 , -5.4 , -5.5  $

  2. $-5.1 ,-5.2 , -5.3 , -5.4 , -5.5 $

  3. $-5.1 , -6.2 , -5.3 , -5.4 , -5.5 $

  4. $-6.1 , -5.2 , -5.3 , -5.4 , -5.5 $


Correct Option: B
Explanation:
$−5>(−5−0.1)=−5.1>−5.2=(−5.1−0.1)>−5.3=(−5.2−0.1)>−5.4\\=(−5.3−0.1)>−5.5=(−5.4−0.1)>...>−6$

$-5>−5.1>−5.2>−5.3>−5.4>−5.5...>−6$

The five rational numbers between $−5$ and $−6$
$-5.1 ,-5.2 , -5.3 , -5.4 , -5.5 $

Which one is in the descending order in the following?

  1. $\displaystyle 6/7, 4/5, 3/4, 7/9$

  2. $\displaystyle 6/7, 4/5, 7/9, 3/4$

  3. $\displaystyle 3/4, 7/9, 4/5, 6/7$

  4. $\displaystyle 7/9, 3/4, 6/7, 4/5$


Correct Option: B
Explanation:
Here we have four factors $\dfrac{3}{4},  \dfrac{4}{5},   \dfrac{6}{7},   \dfrac{7}{9}$
LCM of 4, 5, 7 and 9 is 1260
So, 
$\dfrac{3}{4} \times\dfrac{315}{315}$ = $\dfrac{945}{1260}$

$\dfrac{4}{5} \times\dfrac{252}{252}$ = $\dfrac{1008}{1260}$

$\dfrac{6}{7} \times\dfrac{180}{180}$ = $\dfrac{1080}{1260}$

$\dfrac{7}{9} \times\dfrac{140}{140}$ = $\dfrac{980}{1260}$
As, 
1080 > 1008 > 980 > 945
So, $\dfrac{6}{7} > \dfrac{4}{5} >  \dfrac{7}{9} >  \dfrac{3}{4}$

Arrange in descending order:
$1,00,000; 99,999; 9,90,000; 1,10,000$

  1. $1,00,000; 99,999; 9,90,000; 1,10,000$

  2. $ 1,10,000; 9,90,000; 99,999; 1,00,000$

  3. $ 9,90,000; 99,999; 1,10,000; 1,00,000$

  4. $ 9,90,000; 1,10,000; 1,00,000; 99,999$


Correct Option: D
Explanation:

Comparing digits at lakh's place followed by ten thousand's, thousand's, hundred's, ten's and one's place,


We can arrange the given numbers in descending order as 
$9,90,000;\ 1,10,000;\ 1,00,000;\ 99,999$

Arrange the following in descending order.
$\dfrac{5}{2}$, $\dfrac{3}{2}$, $\dfrac{7}{2}$, $\dfrac{9}{5}$, $\dfrac{9}{8}$ 

  1. $\dfrac{7}{2}$, $\dfrac{9}{8}$, $\dfrac{3}{2}$, $\dfrac{9}{5}$, $\dfrac{5}{2}$

  2. $\dfrac{7}{2}$, $\dfrac{5}{2}$, $\dfrac{9}{5}$, $\dfrac{3}{2}$, $\dfrac{9}{8}$

  3. $\dfrac{5}{2}$, $\dfrac{9}{5}$, $\dfrac{3}{2}$, $\dfrac{9}{8}$, $\dfrac{7}{2}$

  4. $\dfrac{9}{8}$, $\dfrac{5}{2}$, $\dfrac{3}{2}$, $\dfrac{7}{2}$, $\dfrac{9}{5}$


Correct Option: B
Explanation:

$\cfrac{5}{2},\cfrac{3}{2},\cfrac{7}{2},\cfrac{9}{5},\cfrac{9}{8}$

We know that the number with largest denominator is the smallest one.
And among $\cfrac{5}{2},\cfrac{3}{2},\cfrac{7}{2}$ the one with largest numerator is the largest one.
Among $\cfrac{9}{5}$ and $\cfrac{3}{2},$ $\cfrac{9}{5}$ is larger.
Hence descending order is $\cfrac { 7 }{ 2 } ,\cfrac { 5 }{ 2 } ,\cfrac { 9 }{ 5 } ,\cfrac { 3 }{ 2 } ,\cfrac { 9 }{ 8 }.$

- Hide questions