0

Angle sum property of triangle - class-VIII

Description: angle sum property of triangle
Number of Questions: 23
Created by:
Tags: maths theorems on triangles straight line and angles geometry simple two dimensional shapes triangles triangle and quadrilateral lines and angles parallel lines
Attempted 0/23 Correct 0 Score 0

In $\triangle ABC$, if $b\cos A=a\cos B$ then the triangle is 

  1. right angled

  2. isosceless

  3. equilateral

  4. scalene


Correct Option: B
Explanation:

Given 

In $\triangle ABC,b\cos A=a\cos B$
$2{R}\sin B\cos A=2{R}\sin A \cos B$
$\sin (B-A)=0\implies B=A$

State true or false.
The sum of interior angles of a triangle is ${ 180 }^{ \circ  }$.

  1. True

  2. False


Correct Option: A
Explanation:

It is true that the sum of interior angles of a triangle is ${ 180 }^{ \circ  }$.

The angles of a triangle are in the ratio 2: 1: 3. Is the triangle right-angled triangle,

  1. True

  2. False


Correct Option: A
Explanation:

The angles of the triangle are in the ratio, 2:1: 3
Let the angles be $2x, x and 3x$
Thus, sum of the angles = 180
$2x + x+ 3x = 180$
$6x = 180$
$x = 30$ 
Hence, the angles will be 30, 60 and 90
Since, one of the angles is 90, the triangle is a right angled triangle.

In a $\triangle ABC$, $\angle A - \angle B = 30^{\circ}$ and $ \angle B -\angle C = 42^{\circ}$; find $\angle A$.

  1. $84^o$

  2. $94^o$

  3. $32^o$

  4. none of the above


Correct Option: B
Explanation:

In $\triangle ABC$,
$\angle A - \angle B = 30$    ....(I)
$\angle B - \angle C = 42$     .....(II)
Also, sum of angles of the triangle $= 180$
$\angle A + \angle B + \angle C = 180$     ....(III)
On subtracting (I) and (II), we get

$\angle A-2\angle B+\angle C=-12^o$     ....(IV)
On subtracting (III) and (IV), we have
$3\angle B=192$
$\angle B=64^o$
From (I), we get
$\angle A=94^o$

If the angles of a triangle are in the ratio 2:3:4, find the three angles.

  1. $80^o, 120^o, 160^o$

  2. $20^o, 30^o, 40^o$

  3. $40^o, 60^o, 80^o$

  4. None of these


Correct Option: C
Explanation:

The angles of a triangle are in the ratio 2:3:4 
Let $x:y:z=2:3:4$
Then $x= 2t; y= 3t; z= 4t$

Sum of all angles of a triangles is $ 180^0$.
$ 2t + 3t + 4t = 180^0 $
$ 9t = 180^0 $
$  t  = 20^0 $
$ x= 2\times 20^0= 40^0; y= 3\times 20^0= 60^0; z = 4\times 20^0= 80^0 $

In a $\triangle ABC$, the sides AB and AC have been produced to D and E. Bisectors of $\angle CBD$ and $\angle BCE$ meet at O. If $\angle A={ 64 }^{ 0 }$, then $\angle BOC$ is 

  1. ${ 52 }^{ 0 }$

  2. ${ 58 }^{ 0 }$

  3. ${ 26 }^{ 0 }$

  4. ${ 112 }^{ 0 }$


Correct Option: B
Explanation:

Given: OB and OC bisect $ext. \angle B$ and $ext. \angle C$, $\angle A = 64^{\circ}$

Now, In $\triangle OBC$,
Sum of angles = 180
$\angle OBC + \angle OCB + \angle BOC = 180$
$\frac{1}{2} (ext. \angle B + ext. \angle C) + \angle BOC = 180$ (OB and OC bisect exterior angles)
$\frac{1}{2} (180 - \angle ABC + 180 - \angle ACB) + \angle BOC = 180$
$\frac{1}{2} (360 - (\angle ABC + \angle ACB)) + \angle BOC = 180$
$\frac{1}{2} (360 - (180 - \angle A)) + \angle BOC = 180$ (Angle sum property)
$\frac{1}{2} (180 + \angle A) + \angle BOC = 180$
$\angle BOC = 180 - 90 -\frac{1}{2} (64)$
$\angle BOC = 58^{\circ}$

An exterior angle of a triangle is equal to the sum of two ______ opposite angles.

  1. interior

  2. exterior

  3. vertical

  4. none of these


Correct Option: A
Explanation:

An exterior angle of a triangle is equal to the sum of two interior opposite angles

In $\displaystyle \triangle ABC,\angle C=30^{\circ},\angle B=90^{\circ},BC=10 cm,BD\perp AC$ then the length of AD is

  1. $\displaystyle \frac{5}{\sqrt{3}}$ cm

  2. $\displaystyle \frac{6}{\sqrt{3}}$ cm

  3. $\displaystyle \frac{7}{\sqrt{3}}$ cm

  4. $\displaystyle \frac{8}{\sqrt{3}}$ cm


Correct Option: A
Explanation:

In triangle ABC $\angle C=30^{0}and \angle B =90^{0}$ and BC=10 cm and $BD\perp AC$ 

Then $Sin 30^{0}=\frac{AB}{BC}\Rightarrow \frac{1}{2}=\frac{AB}{10}\Rightarrow AB=5 cm$
And $\angle ABD =60^{0}$
Then $tan 60^{0}=\frac{AB}{AD}\Rightarrow \sqrt{3}=\frac{5}{AD}\Rightarrow AD=\frac{5}{\sqrt{3}}cm$

The interior and boundary of a triangle is called

  1. exterior

  2. interior

  3. triangular region

  4. plane


Correct Option: C
Explanation:

Remember this..

The interior and boundary of a triangle is called triangular region..

One of the exterior angle of a triangle is $ 105^0$ and the interior opposite angles are in the ratio 2 : 5 . Find the angles of the triangle.

  1. $ 30^o ; 45^o ; 105^o$ 

  2. $ 45^o ; 45^o ; 90^o$ 

  3. $ 30^o ; 75^o ; 75^o$ 

  4. $ 60^o ; 30^o ; 90^o$ 


Correct Option: C
Explanation:

We have the property that, in a triangle exterior angle is equal to the sum of interior opposite angles.


Given, the interior opposite angles to the exterior angle $105^\circ$ are in the ration $2:5$

$\therefore 2x+5x=105^o$

$7x=105^o$ $\implies x=15^o$

Therefore the interior opposite angles to the angle $105^o$ are $2x=2(15)=30^o$ and $5x=5(15)=75^o$

Let the third angle of the triangle be $C$
We have the sum of interior angles of a triangle is $180^o$

$\therefore 30^o+75^o+C=180^o$
$C=180^o-75^o-30^o=180^o-105^o$
$C=75^o$

Hence, the angles are $30^o,75^o,75^o$.

$\Delta ABC$ is a right angled at A, the value of tan B $\times$ tan C is:

  1. 0

  2. 1

  3. $- 1$

  4. None of the above


Correct Option: B
Explanation:

In $\triangle  ABC$

$\angle A+\angle B+\angle C={ 180 }^{ \circ  }\ \angle B+\angle C={ 180 }^{ \circ  }-{ 90 }^{ \circ  }={ 90 }^{ \circ  }\ \angle C={ 90 }^{ \circ  }-\angle B$
$\tan { B } \times \tan { C } \ =\tan { B } \times \tan { \left( { 90 }^{ \circ  }-\angle B \right)  } \ =\tan { B } \times \cot { B } \ =\tan { B } \times \dfrac { 1 }{ \tan { B }  } \ =1$

In $\Delta ABC$, if $\angle A+\angle B=90^{\circ}$, cot $B=\dfrac{3}{4}$, then the value of tan A is :

  1. $\dfrac{4}{5}$

  2. $\dfrac{3}{4}$

  3. $\dfrac{4}{3}$

  4. $\dfrac{3}{5}$


Correct Option: B
Explanation:

$\angle A+\angle B={ 90 }^{ \circ  }\ \angle B={ 90 }^{ \circ  }-\angle A$

$\cot { B } =\dfrac { 3 }{ 4 } \ \cot { \left( { 90 }^{ \circ  }-\angle A \right)  } =\dfrac { 3 }{ 4 } \ \tan { A } =\dfrac { 3 }{ 4 } $

There are m points on a straight line AB & n points on the line AC none of them being the point A. Triangles are formed with these points as vertices, when (i) A is excluded (ii) A is included.

The ratio of number of triangles in the two cases is?

  1. $\dfrac{m+n-2}{m+n}$

  2. $\dfrac{m+n-2}{m+n-1}$

  3. $\dfrac{m+n-2}{m+n+2}$

  4. $\dfrac{m(n-1)}{(m+1)(n+1)}$


Correct Option: A
Explanation:
Consider triangle without vertex
we can choose $2$ vertices from line $AB$ and one vertex from $A$ the possibilities are 
$\ ^{m}C _{2}\times n$
We can choose $2$ vertices from line $AC$ and one vertex from $AB$ the possibilities are:
$\ ^{n}C _{2}\times m$
As anyone of the above can be done so number of possibilities is 
$\ ^{m}C _{2}\times n+\ ^{n}C _{2}\times m$
Solving 
$\ ^{m}C _{2}\times \ ^{n}C _{2}\times m$
$=\dfrac{m!}{2!(m-2)!}\times n+\dfrac{n!}{2!(n-2)!}\times m$
$=\dfrac{m(m-1)}{2}\times n+\dfrac{n(n-1)}{2}\times m$
$=\dfrac{mn(m+n-2)}{2}$
Consider triangles with vertex $A$
As one vertex is $A$, we can choose one vertex from $AC$ and one from $AB$ the possibilities are 
$l\times m\times n$
$=mn$
Number of triangle is mn(m+n)/2$
Taking the ratio of $1$ and $2$
$\dfrac{mn(n+m-2)}{2}/\dfrac{mn(m+n)}{2}$
$\dfrac{m+n-2}{m+n}$



The position vectors of vertices of $\Delta ABC$ are $(1, -2), (-7, 6)$ and $\left(\dfrac{11}{5}, \dfrac{2}{5}\right)$ respectively. The measure of the interior angle $A$ of the $\Delta ABC$, is

  1. acute and lies in $(75^o, 90^o)$

  2. acute and lies in $(60^o, 75^o)$

  3. acute and lies in $(45^o, 60^o)$

  4. obtuse and lies in $(120^o, 150^o)$


Correct Option: B

In the above figure, $ABC$ is a right-angled triangle, right angled at $B$ and $AD$ is the external bisector of angle $A$ of triangle $ABC$.

Find $AD$, if $AC= 17 \,cm$ and $BC = 8 \,cm$.

  1. $15 \,cm$

  2. $23 \,cm$

  3. $60 \,cm$

  4. $15\sqrt{17} cm$


Correct Option: D

In a triangle $ABC$, three force of magnitudes $3\overline {AB}\cdot\ 2\overline {AC}$ and $2\overline {CB}$ are acting along the sides $AB,AC$ and $CB$ respectively. If the resultant meets $AC$ at $D$, then the ratio $DC:AD$ will be equal to :

  1. $1:1$

  2. $1:2$

  3. $1:3$

  4. $1:4$


Correct Option: A

In $\Delta ABC$. If $x=\tan\left(\dfrac{B-C}{2}\right)\tan\dfrac{A}{2}, y=\tan\left(\dfrac{C-A}{2}\right)\tan\dfrac{B}{2}, z=\tan\left(\dfrac{A-B}{2}\right)\tan\dfrac{C}{2}$, then $x+y+z$ (in terms of $x,y,z$ only) is 

  1. $xyz$

  2. $2xyz$

  3. $-xyz$

  4. $\dfrac{1}{2}xyz$


Correct Option: A
Explanation:

In $ \triangle ABC$


$\tan\left(\dfrac{B-C}{2}\right)=\dfrac{b-c}{b+c}\cot\dfrac{A}{2}$


$\implies x=\dfrac{b-c}{b+c}\implies\dfrac{-c}{b}$


Similarly $y=\dfrac{-a}{c},z=\dfrac{-b}{a}$

These on adding gives $\dfrac{-(ac^2+ba^2+cb^2)}{(abc)^2}$

Let $ A(1,2,3), B(0,0,1), C(-1,1,1)$ are the vertices of a $\triangle ABC$. Then, the equation of internal angle bisector through A to side BC is 
  1. $\underset{r}{\rightarrow}=\widehat{i}+2\widehat{j}+3\widehat{k}+\mu (3\widehat{i}+2\widehat{j}+3\widehat{k})$

  2. $\underset{r}{\rightarrow}=\widehat{i}+2\widehat{j}+3\widehat{k}+\mu (3\widehat{i}+4\widehat{j}+3\widehat{k})$

  3. $\underset{r}{\rightarrow}=\widehat{i}+2\widehat{j}+3\widehat{k}+\mu (3\widehat{i}+3\widehat{j}+2\widehat{k})$

  4. $\underset{r}{\rightarrow}=\widehat{i}+2\widehat{j}+3\widehat{k}+\mu (3\widehat{i}+3\widehat{j}+4\widehat{k})$


Correct Option: B

In a  $\triangle A B C,$  side  $A B$  has the equation  $2 x + 3 y = 29$  and the side  $A C$  has the equation  $x + 2 y = 16.$  If the mid point of  $B C$  is  $( 5,6 ) ,$  then the equation of  $B C$  is

  1. $2 x + y = 16$

  2. $x + y = 11$

  3. $2 x - y = 4$

  4. $x + y = - 11$


Correct Option: B
Explanation:

$\cfrac { x _{ 1 }+x _{ 2 } }{ 2 } =5\Rightarrow x _{ 1 }+x _{ 2 }=10.....(1)\quad and\quad y _{ 1 }+y _{ 2 }=12.....(2)$

$Point(x _1,y _1)$ lie on line AC
then
$x _1+2y _1=16...(3)$
Similarly $2x _2+3y _2=29....(4)$
$\Rightarrow 2(x _1+x _2)+4y _1+3y _2=32+29\2\times 10+4y _1+36-3y _1=61\y _1=5\Rightarrow x _1=6\Rightarrow x _2=4\ \Rightarrow y _2=7$
now,
we take these two points and make equation,
$AC= x+y=11$

In triangle, three angles are  $x , x + 10 ^ { \circ } + x + 20 ^ { \circ }$  then the biggest is

  1. $70 ^ { \circ }$

  2. $80 ^ { \circ }$

  3. $90 ^ { \circ }$

  4. none


Correct Option: A

In. triangle ABC,$\angle A$ + $\angle B$ = 144 and$\angle A$ + $\angle C$ = 124.
Calculate smallest angle of the triangle.

  1. $36^o$

  2. $56^o$

  3. $46^o$

  4. none of these


Correct Option: A
Explanation:

$\angle A + \angle B = 144$...(I)
$\angle A + \angle C = 124$...(II)
In triangle ABC,
$\angle A  + \angle B + \angle C = 180 $
Add, I and II,
$\angle A + \angle B + \angle A + \angle C = 144+ 124$
$180 + \angle A = 268 $
$\angle A = 268 - 180 $
$\angle A = 88$
Put this value in (I)
$\angle A + \angle B = 144$
$88 + \angle B = 144$
$\angle B = 56$
Put this value in (II)
$\angle A + \angle C = 124$
$88 + \angle C = 124$
$\angle C = 36$

If every side of a triangle is doubled, then the area of the new triangle is 'K' times the area of the old one. The value of K is

  1. 2

  2. 3

  3. $\sqrt 2$

  4. 4


Correct Option: D
Explanation:
Let the area of the triangle be $x$.

We know that the area of the triangle
$=\dfrac{1}{2}\times Height \times Base$
$x=\dfrac{1}{2}\times Height \times Base$              $........ (1)$

According to the question,
$Kx=\dfrac{1}{2}\times 2 \times Height \times 2 \times Base$
$Kx=4\times x$
$K=4$

Hence, this is the answer.

The ratio of the areas of two similar triangles is equal to the

  1. ratio ofcorresponding medians

  2. ratio ofcorresponding sides

  3. ratio of the squares ofcorresponding sides

  4. none of these


Correct Option: C
Explanation:

The ratio of the areas of two similar triangles is equal to the square of ratio of their corresponding sides.

- Hide questions