Taylor's and maclaurin's series - class-XII
Description: taylor's and maclaurin's series | |
Number of Questions: 20 | |
Created by: Chandra Bhatti | |
Tags: maths applications of differential calculus |
If $\sin { x } +\sin ^{ 2 }{ x } =1$, then the value of $\cos ^{ 12 }{ x } +3\cos ^{ 10 }{ x } +3\cos ^{ 8 }{ x } +\cos ^{ 6 }{ x } -2$ is equal to
In the Taylor series expansion of $\exp \left( x \right) + \sin \left( x \right)$ about the point $x = \pi $, the coefficient of ${\left( {x = \pi } \right)^2}$ is
If the sum of the series $\dfrac{3}{1!}+\dfrac{5}{2!}+\dfrac{7}{3!}+\dfrac{9}{4!}+...\infty=Ae+B$
Find the value of $A+B$
The value of $\mathop {\lim }\limits _{x \to 0} \frac{{\sin x + \log \left( {1 - x} \right)}}{{{x^2}}}$ equals
$\ln{(1+x)}< x-\cfrac{{x}^{2}}{2}+\cfrac{{x}^{3}}{3}$ for $x> 0$
If $f(x) = (2011 + x)^{n}$, where $x$ is a real variable and $n$ is a positive integer, then the value of
$f(0) + f'(0) + \dfrac {f"(0)}{2!} + .... + \dfrac {f^{(n - 1)}(0)}{(n - 1)!}$ is.
The fourth term in Taylor series of $\log\ x$ centered at $a=1$ is?
If $\dfrac{1}{(1-2x)(1+3x)}$ is to be expanded as a power series of $x$, then
The coefficient of the fourth term in Taylor series of $x^4 + x ^2-2$ centered at $a=1$.
The coefficient of the third term in the Taylor series of $(x-1)e^x$ is?
The value of $\displaystyle\lim _{x\rightarrow 0}\dfrac{\log\ x}{x-1}$ using taylor series is?
For the function $\sin\pi x$ centred at $a=0.5$.using taylor series expansion,find approximate value of $\sin\left(\dfrac{\pi}{2} + \dfrac{\pi}{10} \right)$
The third term in Maclaurin series of $xe^{-x}$ is?
In Maclaurin series of $sin^2x$, the coefficient of the third term is?
The value of $\displaystyle\lim _{x\rightarrow 0}\dfrac{x^2e^x}{cosx-1}$ using taylor series is?
For Maclaurin series of $log(1+x)$, the coefficient of the third term is given by:
The value of $\displaystyle\lim _{x\rightarrow 0}\dfrac{sinx-x}{x^3}$ using taylor series is?
The value of $\displaystyle\lim _{x\rightarrow 0}\dfrac{log\ cox}{x^2}$ using taylor series is?
Evaluate $\displaystyle \lim _{x \rightarrow 0} \dfrac{(e^{5x}-1)^5 -1}{\sqrt[3]{x^2 - sinx^2}}$ using Maclaurin's series
Evaluate $\displaystyle \lim _{x \rightarrow 0} \dfrac{x - tan^{-1}x}{x^3}$ using series expansion