Trigonometric functions - class-XI
Description: trigonometric functions | |
Number of Questions: 20 | |
Created by: Supriya Thakkar | |
Tags: trigonometric functions maths trigonometry |
If $\tan 4x+\tan 5x-\tan 9x=k\tan 4x\tan 5x\tan 9x$ then $k=$
State true or false $\tan(\dfrac{\pi}{4} + \theta) - \tan(\dfrac{\pi}{4} -\theta) = 2\tan\theta$
State true or false
$tan 5x-tan 3x-tan 2x=$
$A, B, C$ are three angles such that $\tan A+\tan B+\tan C=\tan A \tan B \tan C.$ Which of the following statements is always correct ?
If $\dfrac{\pi}{4}<A<\dfrac{\pi}{2}$ then $\tan^{-1}\left(\dfrac{1}{2}\tan 2A\right)+\tan^{-1}(\cot A)+\tan^{-1}(\cot^{3}A)$=
If $A+B+C=\pi $ and cosA=cosB cosC, then tanB tanC is equal to
$\alpha, \beta$ are the solution (s) of $3 cos 2 \theta + 4 sin 2 \theta = 5$
$tan (\alpha + \beta) = $
$\alpha, \beta$ are the solution (s) of $3 cos 2 \theta + 4 sin 2 \theta = 5$
$tan (\alpha - \beta) = $
In $\Delta$ ABC, (a + b + c) ( tan $\dfrac{A}{2}$ + tan $\dfrac{B}{2}$) =
$\cot^{2} \dfrac{\pi}{11}+\cot^{2} \dfrac{2\pi}{11}+\cot^{2} \dfrac{3\pi}{11}........+\cot^{2} \dfrac{5\pi}{11}=?$
$\tan \alpha + 2\tan 2\alpha + 4\tan 4\alpha + 8\tan 8\alpha + 16\tan 16\alpha + 32\cot 32\alpha $ is equal
Simplify: $\tan5\tan { 30 } \times 4\tan { 85=\ _ \ _ \ _ } $
If $\alpha$ is the angle of first quadrant such that $co\sec ^{ 4 }{ \alpha }=17+\cot ^{ 4 }{ \alpha } $, then what is the value of $\sin{\alpha}$?
General solution of $\dfrac{1-{tan}^{2}x}{{sec}^{2}x}=\dfrac{1}{2}$ is
The cosine of the obtuse angle formed by the medians from the vertices of the acute angles of an isosceles right angled triangle is
In an isosceles $\triangle ABC$, if the altitudes intersect on the inscribed circle then cosine of the vertical angle $'A'$ is :
If $3sin\alpha =5sin\beta ,\quad then\quad \frac { \tan { \frac { \alpha +\beta }{ 2 } } }{ \tan { \frac { \alpha -\beta }{ 2 } } } $ is equal to
If $y\tan (A+B+C)=x\tan (A+B-C)=\lambda$, then $\tan 2C=?$
If $4^{2\, sin^2x}.16^{tan^2x}.2^{4\, cos^2x} = 256 $ such that $0 < x < \dfrac{\pi}{2}$ then $x$ is equal to ___________.