0

Trigonometric ratios - class-IX

Attempted 0/17 Correct 0 Score 0

$\sin ^{ 8 }{ \theta  } -\cos ^{ 8 }{ \theta  } -\left( \sin ^{ 2 }{ \theta  } -\cos ^{ 2 }{ \theta  }  \right) \left( 1-\sin ^{ 2 }{ \theta  }  \right) $=0

  1. True

  2. False


Correct Option: B
Explanation:

$\sin^4 \theta+\cos^4 \theta=(\sin^2 \theta+\cos^2 \theta)^2-2\sin^2 \theta\cos^2 \theta=1-2\sin^2 \theta\cos^2 \theta$

$\sin^4 \theta-\cos^4 \theta=(\sin^2 \theta-\cos^2 \theta)(\sin^2 \theta+\cos^2 \theta)=\sin^2 \theta-\cos^2 \theta$
$\sin^8\theta-\cos^8\theta-(\sin^2 \theta-\cos^2 \theta)(1-\sin^2 \theta)=(\sin^4 \theta+\cos^4 \theta)(\sin^4 \theta-\cos^4 \theta)-(\sin^2 \theta-\cos^2 \theta)(1-\sin^2 \theta)$
                                                                                 $=(1-2\sin^2 \theta\cos^2 \theta)(\sin^2 \theta-\cos^2 \theta)-(\sin ^2 \theta-\cos^2\theta)(1-\sin^2 \theta)$
                                                                                 $=(\sin^2 \theta-\cos^2 \theta)(\sin^2 \theta)(1-2\cos^2 \theta)$
So the given relation is $\text{False}$

If $tan x + cot x = 2$, then $sin^{2n}x+cos^{2n}x=$

  1. $\dfrac{1}{2}$

  2. $2^n$

  3. $\dfrac{1}{2^n}$

  4. $\dfrac{1}{2^{n-1}}$


Correct Option: D
Explanation:

Given $\tan x+\cot x=2$

$\implies \tan x+\dfrac{1}{\tan x}=2$
$\implies \tan^2 x-2\tan x+1=0$
$\implies (\tan x-1)^2=0$
$\implies \tan x=1\implies x=\dfrac{\pi}{4}$
$\sin^{2 n} x+\cos^{2 n} x=\bigg(\dfrac{1}{\sqrt{2}}\bigg)^{2 n}+\bigg(\dfrac{1}{\sqrt{2}}\bigg)^{2 n}=\dfrac{1}{2^n}+\dfrac{1}{2^n}=\dfrac{2}{2^n}=\dfrac{1}{2^{n-1}}$

If $\tan x =\dfrac{3}{4} , \pi < x < \dfrac{3\pi}{2} $ find value of $\sin\dfrac{x}{2} , \cos\dfrac{x}{2} , \tan \dfrac{x}{2}$

  1. cos x/2= 3/2, sin x/2 =-3/2, tan x/2= -1/√10

  2. cos x/2= 3/√10, sin x/2 =-3/2, tan x/2= -1/√10

  3. cos x/2= -1/√10, sin x/2 = 3/√10, tan x/2= -3

  4. cos x/2= 3/√10, sin x/2 =-2/3, tan x/2= -1/√10


Correct Option: C
Explanation:
Given 

$ \pi < x < \dfrac {3\pi} 2$ 

$ \implies \dfrac \pi 2 < \dfrac x2 < \dfrac {3\pi }4 $ 

$ \implies \cos \dfrac x2 <0 , \sin \dfrac x2 >0 $ 

$ \tan x =\dfrac 34 $ 

$ \dfrac {2 \tan \dfrac x2 }{1-\tan ^2 \dfrac x2 }=\dfrac 34$

$ 8 \tan \dfrac x2 =3-3\tan ^2 \dfrac x2 $

$ 3\tan ^2 \dfrac x2 +8\tan \dfrac x2 -3=0 $ 

$ 3\tan ^2 \dfrac x2 +9\tan \dfrac x2 - \left(\tan \dfrac x2 +3 \right)=0 $ 

$ \tan \dfrac x2 =-3,\dfrac 13 $ 

As $ tan \dfrac x2 <0 \implies \tan \dfrac x2 =-3$ 

$ \cos \dfrac x2 =\dfrac {-1}{\sqrt {(-1)^2+3^2}}=\dfrac {-1}{\sqrt {10}}$ 

$ \sin \dfrac x2 =\dfrac {3}{\sqrt {(-1)^2+3^2}}=\dfrac {3}{\sqrt {10}}$ 

A boat takes $19$ hours for travelling downstream from point $A$ to point $B$ and coming back to a point $C$ midway between $A$ and $B$. If the velocity of the stream is $4$ $kmph$ and the speed of the boat in still water is $14 \mathrm { kmph}, $ what is the distance between $A$ and $B$?

  1. $160km$

  2. $180km$

  3. $200km$

  4. $220km$


Correct Option: B
Explanation:


Speed in downstream =  $(14 + 4) km/hr = 18 km/hr ;$

Speed in upstream =  $(14 – 4) km/hr = 10 km/hr. $

Let the distance between A and B be $x$ km. Then,

$\frac{x}{18} + \frac{x}{2}\times\frac{1}{10}$ = 19 

$\Rightarrow \frac{x}{18} + \frac{x}{20}$ = 19 

$\Rightarrow$ $x = 180 km.$

If $\tan \theta+\left(\dfrac {\pi}{2}+\theta\right)=0$ then the most general value of $\theta$ is (where $n\ \in\ Z$)

  1. $n\ \pi \pm \dfrac {\pi}{4}$

  2. $2n\ \pi \pm \dfrac {\pi}{4}$

  3. $2n\ \pi \pm \dfrac {\pi}{4}$

  4. $\dfrac {n\pi}{2}+(-1)^{n} ,\dfrac {\pi}{4}$


Correct Option: A

$\sin\ (45^{o}+\theta)-\cos\ (45^{o}-\theta)$ is equal to

  1. $2\cos \theta$

  2. $0$

  3. $2\sin \theta$

  4. $1$


Correct Option: A

What is the exact value of $cos \theta$ trigonometric functions for the angle formed when the terminal side passes through $(6, 8)$?

  1. $\dfrac{3}{5}$

  2. $\dfrac{6}{5}$

  3. $\dfrac{4}{5}$

  4. $\dfrac{8}{5}$


Correct Option: C
Explanation:

By using Pythagoras theorem, we will find the value of hypotenuse.
$6^{2}+8^{2}=c^{2}$
$36 + 64 = c^{2}$
$c = 10$
So, $\cos \theta$ = $\dfrac{opposite \space\ side }{hypotenuse}$ = $\dfrac{8}{10}$

$\cos \theta$ = $\dfrac{4}{5}$

So, option C is correct.

Determine the exact value of $\cos \theta$ trigonometric functions for the angle formed when the terminal side passes through $(3, 4).$

  1. $\dfrac{4}{5}$

  2. $\dfrac{3}{5}$

  3. $\dfrac{2}{5}$

  4. $\dfrac{1}{5}$


Correct Option: A
Explanation:

By using Pythagoras theorem, we will find the value of hypotenuse.
$3^{2}+4^{2}=c^{2}$
$9 + 16 = c^{2}$
$c = 5$
So, $\cos\theta$ = $\dfrac{adjacent \space\ side}{hypotenuse}$

$\cos \theta$ = $\dfrac{4}{5}$

So, option A is correct.

Let $\theta$ be an angle in standard position with (x, y) a point on the terminal side of $\theta$ and r = $\sqrt{x^{2}+y^{2}}\neq 0$. What is cos $\theta$?

  1. $\dfrac{y}{r}$

  2. $\dfrac{r}{y}$

  3. $\dfrac{x}{r}$

  4. $\dfrac{r}{h}$


Correct Option: C
Explanation:

By using Pythagoras theorem, we will find the value of hypotenuse.
$x^{2}+y^{2}=r^{2}$
So, $\cos \theta$ = $\dfrac{adjacent \space\ side }{hypotenuse}$ = $\dfrac{y}{r}$

$\cos \theta$ = $\dfrac{x}{r}$

So, option C is correct.

Find the exact value of sec $\theta$ trigonometric functions for the angle formed when the terminal side passes through (3, 4).

  1. $\dfrac{4}{5}$

  2. $\dfrac{3}{5}$

  3. $\dfrac{2}{5}$

  4. $\dfrac{5}{4}$


Correct Option: D
Explanation:

By using Pythagoras theorem, we will find the value of hypotenuse.
$3^{2}+4^{2}=c^{2}$
$9 + 16 = c^{2}$
$c = 5$
So, $\sec \theta$ = $\dfrac{hypotenuse}{adjacent \space\ side}$

$\sec \theta$ = $\dfrac{5}{4}$

So, option D is correct.

Find sec $\theta$, if $\theta$ be an angle in standard position with (x, y) a point on the terminal side of $\theta$ and r = $\sqrt{x^{2}+y^{2}}\neq 0$.

  1. $\dfrac{y}{r}$

  2. $\dfrac{r}{y}$

  3. $\dfrac{x}{r}$

  4. $\dfrac{r}{x}$


Correct Option: D
Explanation:

By using Pythagoras theorem, we will find the value of hypotenuse.
$x^{2}+y^{2}=r^{2}$

So, sec $\theta$ = $\frac{hypotenuse}{adjacent\space\ side }$= $\dfrac{r}{x}$

sec $\theta$ = $\dfrac{r}{x}$

So, option D is correct.

Find the exact value of sin $\theta$ trigonometric functions for the angle formed when the terminal side passes through (6, 8).

  1. $\dfrac{4}{5}$

  2. $\dfrac{6}{5}$

  3. $\dfrac{10}{5}$

  4. $\dfrac{3}{5}$


Correct Option: A
Explanation:

By using Pythagoras theorem, we will find the value of hypotenuse.
$6^{2}+8^{2}=c^{2}$
$36 + 64 = c^{2}$
$c = 10$
So, $\sin \theta$ = $\dfrac{opposite \space\ side }{hypotenuse}$

= $\dfrac{8}{10}$ = $\dfrac{4}{5}$

So, option A is correct.

Find the exact value of cosec $\theta$ trigonometric functions for the angle formed when the terminal side passes through $(3, 4).$

  1. $\dfrac{4}{5}$

  2. $\dfrac{3}{5}$

  3. $\dfrac{5}{3}$

  4. $\dfrac{5}{4}$


Correct Option: C
Explanation:

By using Pythagoras theorem, we will find the value of hypotenuse.
$3^{2}+4^{2}=c^{2}$
$9 + 16 = c^{2}$
$c = 5$
So, $\csc \theta$ = $\dfrac{hypotenuse}{opposite \space\ side}$

$\csc \theta$ = $\dfrac{5}{3}$

So, option C is correct.

Find cot $\theta$, if $\theta$ be an angle in standard position with (x, y) a point on the terminal side of $\theta$ and r = $\sqrt{x^{2}+y^{2}}\neq 0$.

  1. $\dfrac{y}{r}$

  2. $\dfrac{x}{y}$

  3. $\dfrac{x}{r}$

  4. $\dfrac{r}{x}$


Correct Option: B
Explanation:

By using Pythagoras theorem, we will find the value of hypotenuse.
$x^{2}+y^{2}=r^{2}$
So, cot $\theta$ = $\dfrac{adjacent\space\ side}{opposite\space\ side}$= $\dfrac{x}{y}$


cot $\theta$ = $\dfrac{x}{y}$

So, option B is correct.

Find cosec $\theta$, if $\theta$ be an angle in standard position with (x, y) a point on the terminal side of $\theta$ and r = $\sqrt{x^{2}+y^{2}}\neq 0$.

  1. $\dfrac{y}{r}$

  2. $\dfrac{r}{y}$

  3. $\dfrac{x}{r}$

  4. $\dfrac{r}{x}$


Correct Option: B
Explanation:

By using Pythagoras theorem, we will find the value of hypotenuse.
$x^{2}+y^{2}=r^{2}$
So, cosec $\theta$ = $\dfrac{hypotenuse}{opposite\space\ side }$= $\dfrac{r}{y}$

cosec $\theta$ = $\dfrac{r}{y}$

So, option B is correct.


lf the distance between the points $(a \cos\theta, a \sin\theta), (a \cos\phi, a \mathrm{sin} \phi)$ is $2\mathrm{a}$ then $\theta=$.

  1. $2n\pi\pm\pi+\phi, n\in z$

  2. $n\displaystyle \pi\pm\frac{\pi}{2}+\phi, n\in z$

  3. $n\pi-\phi, n\in z$

  4. $2n\pi+\phi, n\in z$


Correct Option: A
Explanation:
Given points $(a=cos\theta, a\sin\theta), (a\cos\phi, a\sin \phi)$

distance $2a$

distance between $(x _{1}, y _{1}), (x _{2}, y _{2})$

$\sqrt{(x _{2}-x _{1})^{2}+(y _{2}-y _{2})^{2}}$

So, 
$\sqrt{(a\cos\theta-a\cos\theta)^{2}+(a\sin\phi-a\sin\theta)^{2}}=2a$

Squaring on both sides

$\Rightarrow a^{2}(\cos^{2}\theta+\cos^{2}\phi-2\cos\theta\cos\phi)+a(\sin^{2}\phi+\sin^{2}\theta-2\sin\theta-\sin\phi)=4a^{2}$

$\Rightarrow a^{2}(\sin^{2}\theta+\cos^{2}\theta+\sin^{2}\theta+\cos^{2}\theta-2(\sin\theta-\sin\phi+\cos\theta\cos\phi))=4a^{2}$

$\Rightarrow a^{2}(1+1-2(\cos(\theta-\phi))=4a^{2}$

$\Rightarrow 2-2\cos(\theta-\phi)=4$

$\Rightarrow 2\cos(\theta-\phi)=-2$

$\Rightarrow \cos(\theta-\phi)=-1=\cos(\pi)$

$\Rightarrow \theta-\phi=2n\pi\pm \pi, n\in z$

$\Rightarrow \boxed{\theta=2n\pi\pm\pi+\phi, n\in z}$

Find the exact value of $\dfrac{\sin \theta}{\sec \theta}$ trigonometric functions for the angle formed when the terminal side passes through $(3, 4)$.

  1. $\dfrac{25}{12}$

  2. $\dfrac{12}{5}$

  3. $\dfrac{12}{25}$

  4. $\dfrac{5}{4}$


Correct Option: C
Explanation:

By using Pythagoras theorem, we will find the value of hypotenuse.
$3^{2}+4^{2}=c^{2}$
$9 + 16 = c^{2}$
$c = 5$

So, $\dfrac{\sin\theta}{\sec\theta}$ = $\dfrac{opposite \space\ side \times adjacent \space side}{hypotenuse \times hypotenuse}$

= $\dfrac{3\times 4}{5\times 5}$

=$\dfrac{12}{25}$

So, option C is correct.

- Hide questions