Lines in planes - class-XII
Description: lines in planes,matrix algebra | |
Number of Questions: 17 | |
Created by: Shankara Prabhu | |
Tags: matrix algebra maths inverse of a matrix and linear equations |
$x + 2y + 3z = 0$
$7x + 13y + 19z =0$
$2x - 3y + z = 0$
$4x - y - 2z = 0$
If the lines $L _{1}:\lambda ^{2}x-y-1=0$ $L _{2}:x-\lambda ^{2}y+1=0$ $L _{3}:x+y-\lambda ^{2}=0$ pass through the same point the value(s) of $\lambda$ equals
Three digits numbers $ 7x,36y$ and $12z$ where $x , y , z$ are integers from $0$ to $9 ,$ are divisible by a fixed constant $k.$ Then the determinant $\left| \begin{array} { l l l } { x } & { 3 } & { 1 } \ { 7 } & { 6 } & { z } \ { 1 } & { y } & { 2 } \end{array} \right|$ $\ +48$ must be divisible by
Numbers of ways in which 75600 can be resolved as product of two divisors which are relatively prime ?
Number of values of $a$ for which the lines $2x+y-1=0, ax+3y-3=0, 3x+2y-2=0$ are concurrent is
If the lines $\displaystyle y-x=5,3x+4y=1$ and $\displaystyle y=mx+3$ are concurrent then the value of m is
Three lines $px + qy + r = 0, qx + ry + p = 0$ and $rx + py + q = 0$ are concurrent if
If the lines $2\mathrm{x}-\mathrm{a}\mathrm{y}+1 =0,\ 3\mathrm{x}-\mathrm{b}\mathrm{y}+1 =0,\ 4\mathrm{x}-\mathrm{c}\mathrm{y}+1 =0$ are concurrent then $\mathrm{a}$, b,c are in ?
.
The points $(k, 2-2k)$, $(-k+1, 2k)$ and $(-4-k, 6-2k)$ are collinear for
The straight lines $\mathrm{x}+2\mathrm{y}-9=0,3\mathrm{x}+5\mathrm{y}-5=0$ and $\mathrm{a}\mathrm{x}+\mathrm{b}\mathrm{y}-1=0$ are concurrent if the straight line $22\mathrm{x}-35\mathrm{y}-1=0$ passes through the point
If $\mathrm{a}\neq b\neq \mathrm{c}$ and if $ax+by+\mathrm{c}=0\ bx+cy+\mathrm{a}=0$ and $cx+ay+b=0$ are concurrent,
Which of the following are correct in respect of the system of equations $x + y + z = 8, x - y + 2z = 6$ and $3x - y + 5z = k$?
1. They have no solution, if $k = 15$.
2. They have infinitely many solutions, if $k = 20$.
3. They have unique solution, if $k = 25$.
Select the correct answer using the code given below
To solve $x + y = 3 : 3 x - 2 y - 4 = 0$ by determinant method find $D.$
If the lines $p _{1}x+q _{1}y=1,p _{2}x+q _{2}y=1 $ and $ p _{3}x+q _{3}y=1$ be concurrent, then the points $(p _{1},q _{1}),(p _{2},q _{2})$ and $(p _{3},q _{3})$ ,
If $\Delta =\begin{vmatrix}
x+1 & x+2 & x+a\
x+2 & x+3 & x+b\
x+3 & x+4 & x+c
\end{vmatrix}=0$, then
the family of lines $ax+by+c=0$ passes through
If the lines $\mathrm{x}+\mathrm{p}\mathrm{y}+\mathrm{p}=0,\ \mathrm{q}\mathrm{x}+\mathrm{y}+\mathrm{q}=0$ and $\mathrm{r}\mathrm{x}+\mathrm{r}\mathrm{y}+1 =0 (\mathrm{p},\mathrm{q}, \mathrm{r}$ being distinct and $ \neq$ 1) are concurrent, then the value of
$\displaystyle \frac{p}{p-1}+\frac{q}{q-1}+\frac{r}{r-1}=$