0

Estimation of cube root - class-VIII

Description: estimation of cube root
Number of Questions: 16
Created by:
Tags: maths cube and cube root squares, square roots, cubes, cube roots cubes and cube roots
Attempted 0/16 Correct 0 Score 0

If $x = \sqrt [3]{a + \sqrt {a^{2} - b^{3}}} + \sqrt [3]{a - \sqrt {a^{2} - b^{3}}}$ then $x^{3} + 3bx = $ ____________.

  1. $2a$

  2. $2b$

  3. $3a$

  4. $4a$


Correct Option: A
Explanation:
Given,
$x = \sqrt [3]{a + \sqrt {a^{2} - b^{3}}} + \sqrt [3]{a - \sqrt {a^{2} - b^{3}}}$.......(1).
Now cubing both sides we get,
$x^3=a+\sqrt{a^2-b^3}+a-\sqrt{a^2-b^3}-3$$\sqrt [3]{a + \sqrt {a^{2} - b^{3}}}  \sqrt [3]{a - \sqrt {a^{2} - b^{3}}}$$( \sqrt [3]{a + \sqrt {a^{2} - b^{3}}} + \sqrt [3]{a - \sqrt {a^{2} - b^{3}}})$
or, $x^3=2a-3bx$ [ Using (1)and $ (\sqrt [3]{a + \sqrt {a^{2} - b^{3}}})(\sqrt [3]{a - \sqrt {a^{2} - b^{3}}})=\sqrt[3]{a^2-(a^2-b^3)}=b$]
or, $x^3+3bx=2a$.

Estimate the cube root of the number $23.$

  1. $2.6$

  2. $2.1$

  3. $2.8$

  4. $1.4$


Correct Option: C
Explanation:
$\sqrt[3]{\dfrac{23 \times 1000}{1000}}$
$\sqrt[3]{23000} \div 10$
Now, find the closest cube root of $23000.$
$28^3 = 21952,$ therefore we can say that $\sqrt[3]{23}$ $\sim$ $\dfrac{28}{10} = 2.8$

Find the cube root of the number $120.$

  1. $4.1$

  2. $4.2$

  3. $4.7$

  4. $4.9$


Correct Option: D
Explanation:
We use the Babylonian Algorithm for cube roots here
According to the algorithm, the cube root is given by the formula 
$x _{n+1}=\dfrac{\left (2x _n+\left (\dfrac N{x _{n^2}}\right )\right )}{3}$
where,
  • $N$ is the number for which cube root is to be found
  • $x _{n}$ is the initial approximation of the cube root
  • $x _{n+1}$ is the subsequent improvement on the cube root 

In this case,
$N = 120$
    $x _0 =4$ since $4^3<40 <5^3$

      $ \therefore$ $x _1 = \dfrac{\left ((2\times4)+\left (\dfrac {120} {4^2}\right )\right )}{3} = \dfrac{\left (8+\left (\dfrac {120}{16}\right )\right )}{3}=4.9$

      $\Rightarrow x _2 =\dfrac{ \left (2\times4.9+\left (\dfrac {120}{(4.9)^2}\right )\right )}{3} = \dfrac{\left (9.8+\left (\dfrac {120}{24.01} \right )\right )}{3}= \dfrac{(9.8+4.99)}{3} = 4.9$

      We can see the value stabilizes around $4.9$. 

      Hence the answer is $'D'.$

      What is the approximate value of the cube root of the number $9?$

      1. $2.08$

      2. $2.19$

      3. $2.34$

      4. $2.51$


      Correct Option: A
      Explanation:

      First multiply and divide by $1,000,000,$ we get
      $\sqrt[3]{\dfrac{9\times 1000,000}{1000,000}}$
      $\sqrt[3]{9,000,000} \div 100$
      Now find the closest cube root of $9,000,000.$
      $208^3 = 8,998,912,$ therefore we can say that $\sqrt[3]{9}$ $\sim$ $\dfrac{208}{100} \sim 2.08$

      State whether true or false:
      If $x^3 = 11$, then $x=\sqrt[3] {11}$
      1. True

      2. False


      Correct Option: A
      Explanation:
      TRUE:
      Odd exponents preserve the sign of the original expression. Therefore, if ${x}^{3}$ is positive, then $x$ must itself be positive. IF ${x}^{3}=11$, then $x$ must be $\sqrt [ 3 ]{ 11 } $

      What is the approximate value of the cube root of the number $12?$

      1. $2.6$

      2. $2.1$

      3. $2.8$

      4. $2.2$


      Correct Option: D
      Explanation:

      $\sqrt[3] {\dfrac{12\times 1000}{1000}}$
      $\sqrt[3]{12000} \div 10$
      Now find the closest cube root of $12000.$
      $22^3 = 10648,$ therefore we can say that $\sqrt[3]{12}$ $\sim$ $\dfrac{22}{10} = 2.2$

      If $\displaystyle \sqrt[3]{3\left ( \sqrt[3]{x}-\frac{1}{\sqrt[3]{x}} \right )}=2$ then $\displaystyle \sqrt[3]{x}+\frac{1}{\sqrt[3]{x}}=$_________

      1. $\displaystyle \frac{8}{3}$

      2. 0

      3. 1

      4. -1


      Correct Option: A
      Explanation:

      $\displaystyle \sqrt[3]{3\left ( \sqrt[3]{x}-\frac{1}{\sqrt[3]{x}} \right )}=2$ 
      Let us assume $\left( \sqrt [ 3 ]{ x } -\frac { 1 }{ \sqrt [ 3 ]{ x }  }  \right) $=a
      So, $\sqrt [ 3 ]{ 3a } =2$
      Taking  cube both sides,
      $3a=8$
      $a=\frac { 8 }{ 3 } $
      So, $\left( \sqrt [ 3 ]{ x } -\frac { 1 }{ \sqrt [ 3 ]{ x }  }  \right) =\frac { 8 }{ 3 } $

      The simplest form of $\sqrt[3]{768}$ is

      1. $2\sqrt[3]{12}$

      2. $4\sqrt[3]{12}$

      3. $3\sqrt{12}$

      4. $3\sqrt[3]{6}$


      Correct Option: B
      Explanation:

      $\sqrt[3]{768}=\sqrt[3]{2^3\times2^3\times2\times2\times3}=2\times2\sqrt[3]{12}=4\sqrt[3]{12}$

      Find the value of cube root of the number $45$. (Round off your number to the nearest whole number)

      1. $1$

      2. $2$

      3. $3$

      4. $4$


      Correct Option: D
      Explanation:

      We need to find value of $\sqrt[3]{45}$
      Take, $n = 45$, choose any starting value of $x$.
      So, $3^3$ is $27 < 45$
      So, $x = 3$
      $x _\text{next} =$ $\dfrac{2}{3}x+\dfrac{n}{3x^2}$
      $x _\text{next} = $ $\dfrac{2}{3}3+\dfrac{45}{3\times 3^2}$
      $x _\text{next} = 3.6666$
      So, the nearest whole number for the cube root $45$ is $4$.

      Estimate the value of cube root of the number $1333$.

      1. $10.99$

      2. $20.10$

      3. $12.45$

      4. $10.56$


      Correct Option: A
      Explanation:

      We need to find $\sqrt[3]{1333}$
      Take, $n = 1333$, choose any starting value of $x$.
      So, $11^3$ is $1331 < 1333$
      So, $x = 11$
      $x _\text{next}$ $=$ $\dfrac{2}{3}x+\dfrac{n}{3x^2}$
      $x _\text{next}$ $=$ $\dfrac{2}{3}11+\dfrac{1331}{3\times 11^2}$
      $x _\text{next}$ $= 10.999 $    ....(1)
      Assume $x = 10.99$
      $x _\text{next} =$ $\dfrac{2}{3}10.99+\dfrac{1331}{3\times 10.99^2}$
      $x _\text{next} = 10.99$     ....(2)
      Since we are getting $10.99$ in (1) and (2)
      So, the approximate value of $\sqrt[3]{1333}$ $= 10.99$

      Find the cube root of the number 514.

      1. 8.0104

      2. 8.1104

      3. 8.2104

      4. 8.3104


      Correct Option: A
      Explanation:
      We use the Babylonian Algorithm for cube roots here
      According to the algorithm, the cube root is given by the formula 
      $x _{n+1}=\dfrac{(2x _n+(N/x _{n^2}))}{3}$
      where
      • $N$ is the number for which cube root is to be found
      • $x _{n}$ is the initial approximation of the cube root
      • $x _{n+1}$ is the subsequent improvement on the cube root
      In this case,
      $N = 514$
        $x _0 =8$ since, $8^3<514 <9^3$

          $ \therefore$ $x _1 = \dfrac{((2\times8)+(514 /8^2))}{3} = \dfrac{(16+(514/64))}{3}=8.0104$

          $\Rightarrow x _2 = \dfrac{((2\times8.0104+(514/(8.0104)^2))}{3} = \dfrac{(16.02.08+((514/64.1666))}{3}=8.0104$

          We can see the value stabilizes around $8.0104$. Hence the answer is A.

          Estimate the cube root of the number $40.$

          1. $3.1$

          2. $3.2$

          3. $3.4$

          4. $3.9$


          Correct Option: C
          Explanation:

          We use the Babylonian Algorithm for cube roots here

          According to the algorithm, the cube root is given by the formula 
            $x _{n+1}=\dfrac{(2x _n+(N/x _{n^2}))}{3}$
            where,
            • $N$ is the number for which cube root is to be found
            • $x _{n}$ is the initial approximation of the cube root
            • $x _{n+1}$ is the subsequent improvement on the cube root
            • In this case 
            $N = 40$
              $x _0 =3$ since $3^3<40 <4^3$


                $ \therefore$ $x _1 = \dfrac{((2\times3)+(40 /3^2))}{3} = \dfrac{(6+(40/9))}{3}=3.4$

                $\Rightarrow x _2 = \dfrac{(2\times3.4+40/(3.4)^2)}{3} = \dfrac{(6.8+(40/11.56))}{3}= \dfrac{(6.8+3.46)}{3} = 3.4$

                We can see the value stabilizes around 3.4. Hence, the answer is C.

              Find the value of cube root of the number $1290$. (Round off your number to the nearest whole number)

              1. $9.2$

              2. $10.2$

              3. $10.96$

              4. $11$


              Correct Option: D
              Explanation:

              We need to find value of $\sqrt[3]{1290}$
              Take, $n = 1290$, choose any starting value of $x$.
              So, $10^3$ is $1000 < 1290$
              So, $x = 10$
              $x _\text{next} =$ $\dfrac{2}{3}x+\dfrac{n}{3x^2}$
              $x _\text{next} =$ $\dfrac{2}{3}10+\dfrac{1290}{3\times 10^2}$
              $x _\text{next} =  10.966$
              So, the nearest whole number for the cube root $1290$ is $11$.

              Find the value of cube root of the number $6860$. (Round off your number to the nearest hundredth)

              1. $19.003$

              2. $19.00$

              3. $19.32$

              4. $19.008$


              Correct Option: B
              Explanation:

              We need to find value of $\sqrt[3]{6860}$
              Take, $n = 6860$, choose any starting value of $x$.
              So, $19^3$ is $6859 < 6860$
              So, $x = 19$
              $x _\text{next} =$ $\dfrac{2}{3}x+\dfrac{n}{3x^2}$
              $x _\text{next} = $ $\dfrac{2}{3}19+\dfrac{6860}{3\times 19^2}$
              $x _\text{next} = 19.00085 $    ....(1)
              So, the approximate value of $\sqrt[3]{6860}$ nearest hundredth place is $19.00$.

              Find the value of cube root of the number $823$. (Round off your number to the nearest whole number)

              1. $8$

              2. $7$

              3. $9$

              4. $10$


              Correct Option: C
              Explanation:

              We need to find value of $\sqrt[3]{823}$
              Take, $n = 823$, choose any starting value of $x$.
              So, $9^3$ is $729 < 823$
              So, $x = 9$
              $x _\text{next} =$ $\dfrac{2}{3}x+\dfrac{n}{3x^2}$
              $x _\text{next} =$ $\dfrac{2}{3}9+\dfrac{823}{3\times 9^2}$
              $x _\text{next} = 9.386$
              So, the nearest whole number for the cube root $823$ is $9$.

              Find the value of cube root of the number $2486$. (Round off your number to the nearest whole number)

              1. $11$

              2. $12$

              3. $13$

              4. $14$


              Correct Option: D
              Explanation:

              We need to find value of $\sqrt[3]{2486}$
              Take, $n = 2486$, choose any starting value of $x$.
              So, $13^3$ is $2197 < 2486$
              So, $x = 13$
              $x _\text{next} =$ $\dfrac{2}{3}x+\dfrac{n}{3x^2}$
              $x _\text{next} =$ $\dfrac{2}{3}13+\dfrac{2486}{3\times 13^2}$
              $x _\text{next} = 13.56$
              So, the nearest whole number for the cube root $2486$ is $14$.

              - Hide questions