0

Solving Polynomial Equations

Description: Test your understanding of solving polynomial equations by answering the following questions.
Number of Questions: 5
Created by:
Tags: algebra polynomials equations
Attempted 0/5 Correct 0 Score 0

Solve the equation $x^2 - 4x + 3 = 0$.

  1. $x = 1, 3$

  2. $x = -1, -3$

  3. $x = 2, -2$

  4. $x = -2, 2$


Correct Option: A
Explanation:

To solve the equation, we can use the quadratic formula: $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$. Plugging in the values $a = 1$, $b = -4$, and $c = 3$, we get $x = \frac{-(-4) \pm \sqrt{(-4)^2 - 4(1)(3)}}{2(1)} = \frac{4 \pm \sqrt{16 - 12}}{2} = \frac{4 \pm \sqrt{4}}{2} = \frac{4 \pm 2}{2}$. Therefore, the solutions are $x = 1$ and $x = 3$.

Find the roots of the polynomial $x^3 - 2x^2 - 5x + 6 = 0$.

  1. $x = 1, 2, 3$

  2. $x = -1, -2, -3$

  3. $x = 2, -2, 3$

  4. $x = -2, 2, -3$


Correct Option: A
Explanation:

To find the roots of the polynomial, we can use synthetic division or the rational root theorem. Using synthetic division, we find that $x = 1$ is a root. Dividing the polynomial by $x - 1$, we get $x^2 - x - 6$. Factoring this quadratic, we get $(x - 3)(x + 2)$. Therefore, the roots of the polynomial are $x = 1, 2, 3$.

Solve the equation $2x^4 - 5x^3 + 4x^2 - 3x + 2 = 0$.

  1. $x = 1, 2, -1, -2$

  2. $x = 1, -2, 3, -4$

  3. $x = 2, -1, 3, -4$

  4. $x = -1, 2, -3, 4$


Correct Option: A
Explanation:

To solve the equation, we can use the rational root theorem or Descartes' rule of signs. Using the rational root theorem, we find that $x = 1$ is a root. Dividing the polynomial by $x - 1$, we get $2x^3 - 3x^2 + x - 2$. Factoring this cubic, we get $(2x - 1)(x^2 - x + 2)$. Solving the quadratic $x^2 - x + 2 = 0$, we get $x = \frac{1 \pm \sqrt{1 - 4(1)(2)}}{2(1)} = \frac{1 \pm \sqrt{-7}}{2}$. Therefore, the roots of the polynomial are $x = 1, 2, -1, -2$.

Find the roots of the polynomial $x^5 - x^4 - 2x^3 + 2x^2 + x - 2 = 0$.

  1. $x = 1, -1, 2, -2, i$

  2. $x = 1, -1, 2, -2, -i$

  3. $x = 1, -1, 2, -2, \sqrt{2}$

  4. $x = 1, -1, 2, -2, -\sqrt{2}$


Correct Option: A
Explanation:

To find the roots of the polynomial, we can use the rational root theorem or Descartes' rule of signs. Using the rational root theorem, we find that $x = 1$ and $x = -1$ are roots. Dividing the polynomial by $x - 1$, we get $x^4 - 2x^3 - x^2 + x + 2$. Dividing this polynomial by $x + 1$, we get $x^3 - 3x^2 + x - 2$. Factoring this cubic, we get $(x - 2)(x^2 - x + 1)$. Solving the quadratic $x^2 - x + 1 = 0$, we get $x = \frac{1 \pm \sqrt{1 - 4(1)(1)}}{2(1)} = \frac{1 \pm \sqrt{-3}}{2}$. Therefore, the roots of the polynomial are $x = 1, -1, 2, -2, i$.

Solve the equation $x^6 - 2x^5 + 3x^4 - 4x^3 + 5x^2 - 6x + 7 = 0$.

  1. $x = 1, -1, 2, -2, i, -i$

  2. $x = 1, -1, 2, -2, \sqrt{2}, -\sqrt{2}$

  3. $x = 1, -1, 2, -2, \sqrt{3}, -\sqrt{3}$

  4. $x = 1, -1, 2, -2, \sqrt{5}, -\sqrt{5}$


Correct Option: A
Explanation:

To solve the equation, we can use the rational root theorem or Descartes' rule of signs. Using the rational root theorem, we find that $x = 1$ and $x = -1$ are roots. Dividing the polynomial by $x - 1$, we get $x^5 - x^4 - 2x^3 + x^2 + 3x - 7$. Dividing this polynomial by $x + 1$, we get $x^4 - 2x^3 - 3x^2 + 4x + 7$. Factoring this quartic, we get $(x^2 - x + 7)(x^2 - x - 1)$. Solving the quadratic $x^2 - x + 7 = 0$, we get $x = \frac{1 \pm \sqrt{1 - 4(1)(7)}}{2(1)} = \frac{1 \pm \sqrt{-27}}{2}$. Solving the quadratic $x^2 - x - 1 = 0$, we get $x = \frac{1 \pm \sqrt{1 - 4(1)(-1)}}{2(1)} = \frac{1 \pm \sqrt{5}}{2}$. Therefore, the roots of the polynomial are $x = 1, -1, 2, -2, i, -i$.

- Hide questions