0

Angle between planes - class-XI

Description: angle between planes
Number of Questions: 45
Created by:
Tags: vectors, lines and planes product of vectors maths three dimensional geometry applications of vector algebra the plane three dimensional geometry - ii
Attempted 0/45 Correct 0 Score 0

Find the planes bisecting the acute angle between the planes $x-y+2x+1=0$ and $2x+y+z+2=0$

  1. $x+z-1=0$

  2. $x+z+1=0$

  3. $x-z-1=0$

  4. None of these


Correct Option: B
Explanation:

Given planes are $x-y+2{z}+1=0,2{x}+y+z+2=0$

The plane bisecting the acute angle between the planes will be $\dfrac{x-y+2{z}+1}{\sqrt{1+1+4}}=-\dfrac{2{x}+y+z+2}{\sqrt{4+1+1}}$
$\implies x+z+1=0$

The planes $x-3y+4z-1=0$ and $kx-4y+3z-5=0$ are perpendicular then value of $k$ is

  1. $24$

  2. $-24$

  3. $12$

  4. $0$


Correct Option: B
Explanation:
Let direction ratios of the perpendicular to the plane 
$x-3y+4z-1=4$ are $a _{2}=1, b _{1}=-3, c _{1}=4$
and that of planes will be perpendicular if 
$a _{1}a _{2}+b _{1}b _{2}+c _{1}c _{2}=0$
$k+(-3) \times (-4)+4 \times{3}=0$
$k+12+12=0$
$k=-24$








The equation of the plane which bisects the angle between the planes $3x-6y+2z+5=0$ and $4x-12y+3z-3=0$ which contains the origin is ?

  1. $33x-13y+32z+45=0$

  2. $x-3y+z-5=0$

  3. $33x+13y+32z+45=0$

  4. $None\ of\ these$


Correct Option: D
Explanation:

Given ,

The required equation of plane bisects the given two planes.
$\begin{array}{l} \therefore \frac { { 3x-6y+2z+5 } }{ { \sqrt { { 3^{ 2 } }+{ { \left( { -6 } \right)  }^{ 2 } }+{ { \left( 2 \right)  }^{ 2 } } }  } } =\pm \frac { { 4x-12y+3z-3 } }{ { \sqrt { { 4^{ 2 } }+{ { \left( { -12 } \right)  }^{ 2 } }+{ 3^{ 2 } } }  } }  \ \frac { { 3x-6y+2z+5 } }{ { \sqrt { 49 }  } } =\pm \frac { { 4x-12y+3z-3 } }{ { \sqrt { 169 }  } }  \ \frac { { 3x-6y+2z+5 } }{ 7 } =\pm \frac { { 4x-12y+3z-3 } }{ { 13 } }  \ 39x-78y+26z+65=\pm 28x-84y+21z-21 \end{array}$
Now, solving for the positive value, we get
$39x - 78y + 26z + 65$.........(i)
or,  $11x + 6y + 5z + 36 = 0$
And for negative value, we get
$\begin{array}{l} 39x-78y+26z+65=-\left( { 28x-84y+21z-21 } \right)  \ or,\, \, 67x-162y+47z+44=0.......\left( { ii } \right)  \end{array}$
$\because $None of the answer matches with the given equation.
Hence,
Option $D$ is correct  in this case.

The corner of a square OPQR is folded up so that the plane OPQ is perpendicular to the plane OQR, the angle between OP and QR is 

  1. $\dfrac { \pi }{ 2 } $

  2. $\dfrac { \pi }{ 3 } $

  3. $\dfrac { \pi }{ 4 } $

  4. $\dfrac { \pi }{ 6 } $


Correct Option: A

The angle between the plane passing through the points $A(0,\ 0,\ 0),\ B(1,\ 1,\ 1),\ C(3,\ 2,\ 1)$ & the plane passing through $A(0,\ 0,\ 0),\ B(1,\ 1,\ 1),\ D(3,\ 1,\ 2)$ is

  1. $90^{o}$

  2. $45^{o}$

  3. $120^{o}$

  4. $30^{o}$


Correct Option: C
Explanation:

$\begin{array}{l} { \pi _{ 1 } }=ax+by+cz=0 \ a+b+c=0 \ 3a+2b+c=0 \ \frac { a }{ { -1 } } =\frac { { -b } }{ { 1-3 } } =\frac { c }{ { 2-3 } }  \ \frac { a }{ { -1 } } =\frac { b }{ 2 } =\frac { c }{ { -1 } }  \ -x+2y-z=0 \ { \pi _{ 1 } }:\, x-2y+z=0 \ and, \ { \pi _{ 2 } }=ax+by+cz=0 \ a+b+c=0 \ 3a+b+2c=0 \ \frac { a }{ 1 } =\frac { { -b } }{ { 2-3 } } =\frac { c }{ { 1-3 } }  \ \frac { a }{ 1 } =\frac { b }{ 1 } =\frac { c }{ { -2 } }  \ { \pi _{ 2 } }:\, x+y-2z=0 \ Now, \ \cos  \theta =\frac { { \left( { 1-2-2 } \right)  } }{ { \sqrt { 6 } \sqrt { 6 }  } } =\frac { { -3 } }{ 6 } =\frac { { -1 } }{ 2 }  \ \therefore \theta ={ 120^{ \circ  } } \ Hence,\, the\, option\, C\, is\, the\, correct\, answer. \end{array}$

The angle between the planes
$\vec{r}(\hat{i}+2\hat{j}+\hat{k})=4$ and $\vec{r}(\hat{-i}+\hat{j}+2\hat{k})=9$

  1. $30^{\mathrm{o}}$

  2. $60^{\mathrm{o}}$

  3. $45^{\mathrm{o}}$

  4. $90^{0}$


Correct Option: B
Explanation:

Angle between two planes is the angle between their normal vectors.

For the first plane, normal vector is $\vec{n _0}=(1,2,1)$
For second plane, normal vector is $\vec{n _1}=(-1,1,2)$
Let $\theta$ be the angle between the planes, it is also the angle between their normals.
$\implies \cos \theta = \dfrac{{n} _{1}.{n} _{2}}{|n _1||n _2|} $

$\implies \cos \theta = \dfrac{(1,2,1)\cdot (-1,1,2)}{\sqrt{1^2+2^2+1^2}\sqrt{(-1)^2+1^2+2^2}} $

$\implies \cos \theta = \dfrac{-1+2+2}{6}=\dfrac{1}{2}$
$\implies \theta $ = $ {60}^{o}$

What is the cosine of angle between the planes $x + y + z + I = 0$ and $2x-2y+2x+I=0$ ?

  1. $\dfrac{1}{2}$

  2. $\dfrac{1}{3}$

  3. $\dfrac{2}{3}$

  4. None of the above


Correct Option: B
Explanation:

The given planes are $x+y+x+I=0$ and $2x-2y+2z+I=0$ 

For two planes,  $a _{ 1 }x+b _{ 1 }y+c _{ 1 }z+d _{ 1 }=0$ and $ a _{ 2 }x+b _{ 2 }y+c _{ 2 }z+d _{ 2 }=0$ the cosine of the angle between them is,

$\cos\theta =\dfrac { a _{ 1 }a _{ 2 }+b _{ 1 }b _{ 2 }+c _{ 1 }c _{ 2 } }{ \sqrt { a _{ 1 }^{ 2 }+b _{ 1 }^{ 2 }+c _{ 1 }^{ 2 } } \sqrt { a _{ 2 }^{ 2 }+b _{ 2 }^{ 2 }+c _{ 2 }^{2} }  } $

So, for the given planes we have
$\cos\theta =\dfrac { 1\times 2+1\times (-2)+1\times 2 }{ \sqrt { 3 } \sqrt { 12 }  } =\dfrac { 2 }{ 6 } =\dfrac { 1 }{ 3 } $
Hence, option B is correct.

The angle between the planes $2x-3y-6z=5$ and $6x+2y-9z=4$ is

  1. ${\cos ^{ - 1}}\left( {\dfrac{{30}}{{77}}} \right)$

  2. ${\cos ^{ - 1}}\left( {\dfrac{{40}}{{77}}} \right)$

  3. ${\cos ^{ - 1}}\left( {\dfrac{{50}}{{77}}} \right)$

  4. ${\cos ^{ - 1}}\left( {\dfrac{{60}}{{77}}} \right)$


Correct Option: D
Explanation:

${ P } _{ 1 }:2x-3y-6z=5\ { P } _{ 2 }:6x+2y-9z=4$


Angle between plane is angle between normals.


$\therefore \cos { \theta  } =\cfrac { 2\times 6+(-3)\times 2+(-6)(-9) }{ \sqrt { { 2 }^{ 2 }+{ 3 }^{ 2 }+{ 6 }^{ 2 } } \sqrt { { 6 }^{ 2 }+{ 2 }^{ 2 }+{ 9 }^{ 2 } }  } =\cfrac { 60 }{ 77 } $

$ \theta =\cos ^{ -1 }{ \left (\cfrac { 60 }{ 77 } \right ) } $

A line lies in $YZ-$plane and makes angle of $30^o$ with the $Y-$axis, then its inclination to the $Z-$axis is 

  1. $30^o$ or $60^o$

  2. $60^o$ or $90^o$

  3. $60^o$ or $120^o$

  4. $30^o$ or $150^o$


Correct Option: C
Explanation:

since line lies on $y-z$ plane $\alpha ={ 90 }^{ 0 }$

$\beta ={ 30 }^{ 0 }$
$\therefore \cos ^{ 2 }{ \alpha  } +\cos ^{ 2 }{ \beta  } +\cos ^{ 2 }{ \gamma  } =1$
$\therefore \cos ^{ 2 }{ { 30 }^{ 0 } } +\cos ^{ 2 }{ { 30 }^{ 0 } } +\cos ^{ 2 }{ \gamma  } =1$
$\cos ^{ 2 }{ \gamma  } =\cfrac { 1 }{ 4 } \Rightarrow \cos { \gamma  } =\pm \cfrac { 1 }{ 2 } $
$\gamma ={ 60 }^{ 0 },{ 120 }^{ 0 }$
Ans: $C$

If vectors $\bar{b}=\left(\tan\alpha, -1 2\sqrt{\sin \dfrac{\alpha}{2}}\right)$ and $\bar{c}=\left(\tan \alpha , \tan\alpha -\dfrac{3}{\sqrt{\sin \alpha/2}}\right)$ are orthogonal and vector $\bar{a}=(1, 3, \sin 2\alpha)$ make an obtuse angle with the z-axis, then?

  1. $\alpha =\tan^{-1}(-2)$

  2. $\alpha =\tan^{-1}(-3)$

  3. $\alpha =\tan^{-1}(2)$

  4. $-2 < \alpha < 0$


Correct Option: D

Let $\overrightarrow{A}$ be vector parallel to the line of intersection of planes ${p} _{1}$ and ${p} _{2}$ through the origin. ${p} _{1}$ is parallel to the vectors $\overrightarrow{a}=2\hat{j}+3\hat{k}$ and $\overrightarrow{b}=4\hat{j}-3\hat{k}$ and ${p} _{2}$ is parallel to the vectors $\overrightarrow{c}=\hat{j}-\hat{k}$ and $\overrightarrow{d}=3\hat{i}+3\hat{j}$. The angle between $\overrightarrow{A}$ and $2\hat{i}+\hat{j}-2\hat{k}$ is 

  1. $\dfrac{\pi}{2}$

  2. $\dfrac{\pi}{4}$

  3. $\dfrac{\pi}{6}$

  4. $\dfrac{3\pi}{4}$


Correct Option: B,D
Explanation:

Plane ${P} _{1}$ is parallel to $\overrightarrow{a}$ and $\overrightarrow{b}$.
The normal to ${P} _{1}$ is along $\overrightarrow{a}\times \overrightarrow{b}$.
Plane ${P} _{2}$ is parallel to $\overrightarrow{c}$ and $\overrightarrow{d}$.
The normal to ${P} _{2}$ is along $\overrightarrow{c}\times \overrightarrow{d}$.
$\overrightarrow{A}$ is along the line of intersection of planes ${P} _{1}$ and ${P} _{2}$.
$\therefore \overrightarrow{A}$ is along $\left(\overrightarrow{a}\times\overrightarrow{b}\right)\times\left(\overrightarrow{c}\times\overrightarrow{d}\right)$
$\overrightarrow{a}\times\overrightarrow{b}=\left|\begin{matrix} \hat{i} &\hat{j}  &\hat{k}  \ 0 & 2 & 3 \ 0 &4  &-3  \end{matrix}\right|$
$=\left(-6-12\right)\hat{i}-0.\hat{j}+0.\hat{k}$ on simplification
$=-18\hat{i}$
$\left(\overrightarrow{a}\times\overrightarrow{b}\right)\times\left(\overrightarrow{c}\times\overrightarrow{d}\right)$
$\overrightarrow{c}\times\overrightarrow{d}=\left|\begin{matrix} \hat{i} &\hat{j}  &\hat{k}  \ 0 & 1 & -1 \ 3 &3  &0 \end{matrix}\right|$
$=\left(0+3\right)\hat{i}-\left(0+3\right)\hat{j}+\left(0+3\right)\hat{k}$ on simplification
$=3\hat{i}-3\hat{j}-3\hat{k}$
$=3\left(\hat{i}-\hat{j}-\hat{k}\right)$
The angle between $\overrightarrow{A}$ and $2\hat{i}+\hat{j}-2\hat{k}$ is  $\theta$
$\cos{\theta}=\dfrac{\overrightarrow{A}}{\left|\overrightarrow{A}\right|}.\dfrac{\left(2\hat{i}+\hat{j}-2\hat{k}\right)}{3\sqrt{2}}$
$\pm\dfrac{\left(\hat{j}-\hat{k}\right).\left(2\hat{i}+\hat{j}-2\hat{k}\right)}{3\sqrt{2}}$
$\pm\dfrac{1}{\sqrt{2}}$
and $\cos{\theta}=\pm\dfrac{1}{\sqrt{2}}$
$\Rightarrow \theta=\dfrac{\pi}{4},\dfrac{3\pi}{4}$

Let $\overrightarrow{A}$ be vector parallel to the line of intersection of planes ${p} _{1}$ and ${p} _{2}$ through the origin. ${p} _{1}$ is parallel to the vectors $\overrightarrow{a}=2\hat{j}+3\hat{k}$ and $\overrightarrow{b}=4\hat{j}-3\hat{k}$ and ${p} _{2}$ is parallel to the vectors $\overrightarrow{c}=\hat{j}-\hat{k}$ and $\overrightarrow{d}=3\hat{i}+3\hat{j}$. The angle between $\overrightarrow{A}$ and $2\hat{i}+\hat{j}-2\hat{k}$ is:

  1. $\dfrac{\pi}{2}$

  2. $\dfrac{\pi}{4}$

  3. $\dfrac{\pi}{6}$

  4. $\dfrac{3\pi}{4}$


Correct Option: B,D
Explanation:

Plane ${p} _{1}$ is parallel to $\overrightarrow{a}$ and $\overrightarrow{b}$ the normal to ${p} _{1}$ is along $\overrightarrow{a}\times \overrightarrow{b}$ 
Plane ${p} _{2}$ is parallel to $\overrightarrow{c}$ and $\overrightarrow{d}$ the normal to ${p} _{2}$ is along $\overrightarrow{c}\times \overrightarrow{d}$
$\overrightarrow{A}$ is along the line of intersection of planes ${p} _{1}$ and ${p} _{2}$ 
$\therefore \overrightarrow{A}$ is along $\left(\overrightarrow{a}\times \overrightarrow{b}\right)\times \left(\overrightarrow{c}\times \overrightarrow{d}\right)$
$\overrightarrow{a}\times \overrightarrow{b}=\left[\begin{matrix} \hat{i} & \hat{j} & \hat{k} \ 0 & 2 &  3\ 0 & 4 & -3 \end{matrix}\right]$
$=\hat{i}\left(-6-12\right)-\hat{j}\left(0-0\right)+\hat{k}\left(0\right)$
$=-18\hat{i}$
$\overrightarrow{c}\times \overrightarrow{d}=\left|\begin{matrix} \hat{i} & \hat{j} & \hat{k} \ 0  & 1 & -1 \ 3 & 3 & 0 \end{matrix}\right|$
$=\hat{i}\left(0+3\right)-\hat{j}\left(0+3\right)+\hat{k}\left(0-3\right)$
$=3\hat{i}-3\hat{j}-3\hat{k}$
$=3\left(\hat{i}-\hat{j}-\hat{k}\right)$
$ \therefore \overrightarrow{A}$ is along $\hat{i}\times \left(\hat{i}-\hat{j}-\hat{k}\right)=\hat{j}-\hat{k}$
The angle between $\overrightarrow{A}$ and $2\hat{i}+\hat{j}-2\hat{k}$ is $\theta$
$\cos{\theta}=\dfrac{\overrightarrow{A}}{\left|\overrightarrow{A}\right|}.\dfrac{\left(2\hat{i}+\hat{j}-2\hat{k}\right)}{3}$
$   =\pm \dfrac{\left(\hat{j}-\hat{k}\right)\left(2\hat{i}+\hat{j}-2\hat{k}\right)}{3\sqrt{2}}$
$=\pm\dfrac{\left(1+2\right)}{3\sqrt{2}} = \pm \dfrac{1}{\sqrt{2}}$
and $\cos{\theta}=\pm \dfrac{1}{\sqrt{2}}$
$\Rightarrow \theta=\dfrac{\pi}{4},\dfrac{3\pi}{4}$

Let $\overrightarrow{a},\overrightarrow{b},\overrightarrow{c},\overrightarrow{d}$ are such that $\left(\overrightarrow{a}\times \overrightarrow{b}\right)\times \left(\overrightarrow{c}\times \overrightarrow{d}\right)=0$.Let ${p} _{1}$ and ${p} _{2}$ be the planes determined by the pairs of vectors $\overrightarrow{a},\overrightarrow{b}$ and $\overrightarrow{c},\overrightarrow{d}$ respectively . The angle between the planes ${p} _{1}$ and ${p} _{2}$ is

  1. $0$

  2. $\dfrac{\pi}{4}$

  3. $\dfrac{\pi}{3}$

  4. $\dfrac{\pi}{2}$


Correct Option: A
Explanation:

The plane ${p} _{1}$ contains the vectors $\overrightarrow{a}$ and $\overrightarrow{b}$ into normal is along $\overrightarrow{a}\times \overrightarrow{b}$
The normal to plane ${p} _{2}$ is along  $\overrightarrow{c}\times \overrightarrow{d}$.
$\left(\overrightarrow{a}\times \overrightarrow{b}\right)\times \left(\overrightarrow{c}\times \overrightarrow{d}\right)=0$
$\Rightarrow$ two normals are parallel
$\therefore$ the angle between the planes is zero

The equation of the bisector of the obtuse angle between the planes $3x+4y-5z+1=0, 5x+12y-13z=0$ is

  1. $11x+4y-3z=0$

  2. $14x-8y+13=0$

  3. $2x+8y-8z-1=0$

  4. $13x-7z+18=0$


Correct Option: C
Explanation:

Plane1 :$3x+4y-5z+1=0$

Plane2 :$5x+12y-12z=0$
let us construct a $||$gm $ABCD$ with $AB$ & $AD$ in direction of normal to plane $\bot$ & plane2 respectively.
$\overrightarrow { AB } =3\hat { i } +4\hat { j } -5\hat { k } \ \overrightarrow { AD } =5\hat { i } +12\hat { j } -13\hat { k } $
$\therefore \overrightarrow { AC } $ will be the acute angle bisector whereas $\overrightarrow { BD } $ will be in direction of obtuse angle bisector to the normals.
$\overrightarrow { AC } =\overrightarrow { AB } +\overrightarrow { AD } $ (by $||$gm law of addition )
$\overrightarrow { BD } =\overrightarrow { AB } -\overrightarrow { AD } $ (by $\triangle$ law of addition)
$\therefore \overrightarrow { BD } =-2\hat { i } -8\hat { j } +8\hat { k } $ is the direction of the normal to the plane through obtuse angle bisector plane1 & plane2.
$\therefore$ Equation of plane through the line of  intersection of plane1 & plane2
$(3x+4y-5z+1)+\lambda (5x+12y-13z)=0\ (3+5\lambda )x+(4+12\lambda )y+(-5-13\lambda )+1=0$
The above plane should be parallel to the plane formed  as it is normal.
$\therefore \dfrac { 3+5\lambda  }{ -2 } =\dfrac { 4+12\lambda  }{ -8 } =\dfrac { -5-13\lambda  }{ 8 } \ \Rightarrow \lambda =-1$
$\therefore $ The required plane is ,
$-2x-8y+8z+1=0\ \Rightarrow 2x+8y-8z-1=0$

The equations of the plane which passes through $(0, 0, 0)$ and which is equally inclined to the planes $x-y+z-3=0$ and $x+y+z+4=0$ is/are-

  1. $y=0$

  2. $x=0$

  3. $x+y=0$

  4. $x+z=0$


Correct Option: A,D
Explanation:

The equations of the plane which is equally inclined to the planes $x-y+z-3=0$ and $x+y+z+4=0$ is/are- 
$\dfrac { x-y+z-3 }{ \sqrt { { 1 }^{ 2 }+{ 1 }^{ 2 }+{ 1 }^{ 2 } }  } \pm \dfrac { x+y+z+4 }{ \sqrt { { 1 }^{ 2 }+{ 1 }^{ 2 }+{ 1 }^{ 2 } }  } =0$
$\Rightarrow x+z=-1$ and $y=\dfrac { -7 }{ 2 } $
If the plane contains origin
Then desired planes are $x+z=0$ & $y=0$

Ans: A,D

The angle between planes $\overline { r } .\left( 2\overline { i } -3\overline { j } +4\overline { k }  \right) +11=0$ and $\overline { r } .\left( 3\overline { i } -2\overline { j } -3\overline { k }  \right) +27=0$ is

  1. $\cfrac{\pi}{6}$

  2. $\cfrac{\pi}{4}$

  3. $\cfrac{\pi}{3}$

  4. $\cfrac{\pi}{2}$


Correct Option: D
Explanation:

$cos \theta = \dfrac{ a _1 \, a _2 + b _1 \, b _2 + c _1 \, c _2}{\sqrt{a _1^2 + b _1^2 + c _1^2} \sqrt{a _2^2 + b^2 _2 + c _2^2}}$

$\Rightarrow cos \theta = \dfrac{6 + 6 - 12}{\sqrt{4 + 9 + 16} \sqrt{9 + 4 + 9}}$
$\therefore cos \theta = 0$
$\therefore \theta = \dfrac{\pi}{2}$

Find the equation of the bisector planes of the angles between the planes $2x - y + 2z + 3 = 0$ and $3x - 2y + 6z + 8 = 0$.

  1. $ 5x-y-4z-22=0$

  2. $ 23x-13y+32z+26 = 0 $

  3. $ 19x-y-4z+26 = 0 $

  4. none of these


Correct Option: A,B
Explanation:

Equation of the planes is $2x-4y+2z+3=0$ and $3x-2y+6z+8=0$
Then equation of the plane bisection the angles between them are
$\displaystyle \frac { 2x-4y+2z+3 }{ \sqrt { 4+16+4+9 }  } =\pm \frac { 3x-2y+6z+8 }{ \sqrt { 9+4+36+64 }  } $
$\displaystyle \Rightarrow \frac { 2x-4y+2z+3 }{ \sqrt { 33 }  } =\pm \frac { 3x-2y+6z+8 }{ \sqrt { 113 }  } $
$\Rightarrow 5x-y-4z-22=0$ and $23x-13y+32z+26=0$

The angle between two planes is equal to

  1. the angle between the tangents to them from any point

  2. the angle between the normals to them from any point

  3. the angle between the lines parallel to the planes from any point

  4. None of the above


Correct Option: D
Explanation:

The angle between two intersecting planes is equal to the acute angle determined by the normal vectors of the two planes.

This is different from the angle between the normals to the planes from any point.

lf the planes $ x+2y-z+5=0,\ 2x-ky+4z+3=0$ are perpendicular, then $ {k} $ is

  1. $1$

  2. $-1$

  3. $0$

  4. $2$


Correct Option: B
Explanation:

I am using the constant $\lambda$ instead of $k$ to avoid the confusion. 

The normals to the planes are given by $i+2j-k$ and $2i-\lambda j+4k$, respectively. 
Since, they are perpendicular dot product between normals are zero. 
Thus, $(i+2j-k).(2i-\lambda+4k)=0$. 
$\Rightarrow2-2\lambda-4=0 \Rightarrow \lambda=-1$

In the space the equation $by+ cz+ d= 0$ represents a plane perpendicular to the plane:

  1. $YOZ$

  2. $ZOX$

  3. $XOY$

  4. $Z= k$


Correct Option: A
Explanation:

Consider $P : bx+cz+d=0$
a) Equation of $YOZ$ plane is $x=0$
Since, $(i).(bj+ck)=0$
Therefore, $P$ is perpendicular to $YOZ$

b)  Equation of $ZOX$ plane is $y=0$
Since, $(j).(bj+ck)=b \neq 0$
Therefore, $P$ is not perpendicular to $ZOX$

c)  Equation of $XOY$ plane is $z=0$
Since, $(k).(bj+ck)=c \neq 0$
Therefore, $P$ is not perpendicular to $XOY$

d)  Consider. $z=k$
Since, $(k).(bj+ck)=c \neq 0$
Therefore, $P$ is not perpendicular to $z=k$

Ans: A

If the planes $ 2x-y+ \lambda z- 5=0$ and $x+4y+2z- 7= 0$ are perpendicular, then $\lambda=$

  1. $1$

  2. $-1$

  3. $2$

  4. $-2$


Correct Option: A
Explanation:

Since, the planes $2x-y+\lambda z-5=0$ & $x+4y+2z-7=0$ are perpendicular to each other
Therefore, $\left( 2i-j+\lambda k \right) .\left( i+4j+2k \right) =0$
$\Rightarrow 2-4+2\lambda =0$
$\Rightarrow \lambda =1$

Ans: A

If the planes $\vec{r}. (2\widehat{i}- \widehat{j}+ 2\widehat{k})= 4$ and $\vec{r}. (3\widehat{i}+ 2\widehat{j}+\lambda\widehat{k})= 3$ are perpendicular, then $\lambda =$

  1. $2$

  2. $-2$

  3. $3$

  4. $-3$


Correct Option: B
Explanation:

Since, the planes $\vec { r } .(2\widehat { i } -\widehat { j } +2\widehat { k } )=4$ & $\vec{r}. (3\widehat{i}+ 2\widehat{j}+\lambda\widehat{k})= 3\ $ are perpendicular to each other
Therefore, $\left( 2i-j+2 k  \right) .\left( 3i+2j+\lambda k \right) =0$
$\Rightarrow 6-2+2\lambda =0$
$\Rightarrow \lambda =-2$

Ans: B

The angle between the planes, $\vec{r}.(2\widehat{i}- \widehat{j}+\widehat {k})=6$ and $\vec{r}.(\widehat{i}+ \widehat{j}+2\widehat {k})=5$ , is:

  1. $\dfrac{\pi}{3}$

  2. $\dfrac{2\pi}{3}$

  3. $\dfrac{\pi}{6}$

  4. $\dfrac{5\pi}{6}$


Correct Option: A
Explanation:

Angle between $2x-y+z=6$ & $x+y+2z=5$ is
$\theta =\cos ^{ -1

}{ \left[ \dfrac { \left( 2i-j+k \right) .\left( i+j+2k \right)  }{

\sqrt { \left( { 2 }^{ 2 }+{ 1 }^{ 2 }+{ 1 }^{ 2 } \right) \left( 1^{ 2

}+{ 1 }^{ 2 }+2^{ 2 } \right)  }  }  \right]  } =\dfrac { \pi  }{ 3 } $

Ans: B

The angle between the planes $ 3x-6y+2z+5=0 $ 7 $ 4x-12y+3z=3 $.Which is bisected by the plane
$ 67x-162y+47z+44 = 0 $is the angle which-

  1. contains origin

  2. is acute

  3. is obtuse

  4. is right angle


Correct Option: A

A plane$ P _{1}$ has the equation $2x-y+z=4$ and the plane $P _{2}$ has the equation $x+ny+2z=11.$ If the angle between $P _{1}$ and $P _{2}$ is $\pi /3$ then the value (s) of '$n$' is (are)

  1. $7/2$

  2. $17,-1$

  3. $-17,1$

  4. $-7/2$


Correct Option: C
Explanation:
A plane$ P _{1}$ has the equation $2x-y+z=4$ and the plane $P _{2}$ has the equation $x+ny+2z=11.$  
The direction vector of the normal of the first plane is $2i-j+k$ and second plane is $i+nj+2k$.
The angle between $P _{1}$ and $P _{2}$ is $\pi /3$
$\cos { \dfrac { \pi  }{ 3 }  } =\dfrac { \left( 2i-j+k \right) .\left( i+nj+2k \right)  }{ \sqrt { \left( { 2 }^{ 2 }+{ 1 }^{ 2 }+{ 1 }^{ 2 } \right) \left( { 1 }^{ 2 }+{ n }^{ 2 }+{ 2 }^{ 2 } \right)  }  } $
$\Rightarrow \dfrac { 1 }{ 2 } =\dfrac { 4-n }{ \sqrt { 6\left( 5+{ n }^{ 2 } \right)  }  } $
$\Rightarrow \cos^2(\dfrac{\pi}{3})=\dfrac{(4-n)^2}{6(5+n^2)} $
$\Rightarrow n^2+16n-17=0\Rightarrow (n+17)(n-1)=0$
$\Rightarrow n=-17,1$

The angle between the planes $\displaystyle x + y + z = 0$ and $\displaystyle 3x - 4y + 5z = 0$ is

  1. $\displaystyle \cos ^{-1}\left ( \frac{1}{5} \sqrt{\frac{2}{5}} \right )$

  2. $\displaystyle \frac{\pi }{2}$

  3. $\displaystyle \frac{\pi }{3}$

  4. $\displaystyle \cos ^{-1}\left ( \frac{2}{5} \sqrt{\frac{2}{3}} \right )$


Correct Option: D
Explanation:

The angle between $x+y+z=0$ & $3x-4y+5z=0$ is
$\theta =\cos ^{ -1

}{ \left[ \dfrac { \left(\vec  i+\vec j+\vec k \right) .\left( 3\vec i-4\vec j+5\vec k \right)  }{

\sqrt { \left( { 1 }^{ 2 }+{ 1 }^{ 2 }+{ 1 }^{ 2 } \right) \left( 3^{ 2

}+{ 4 }^{ 2 }+5^{ 2 } \right)  }  }  \right]  } $

$= \cos ^{ -1 } \left( \dfrac { 2 }{ 5 } \sqrt { \dfrac { 2 }{ 3 }  }  \right) $

Ans: D

Which of the following planes is equally inclined to the planes $\displaystyle 4x + 3y - 5z = 0$ and $\displaystyle 5x - 12y + 13z = 0$?

  1. $\displaystyle 11x - 3y = 0$

  2. $\displaystyle 3x + 11y = 0$

  3. $\displaystyle 3x + 11y = 65z$

  4. none of these


Correct Option: A
Explanation:

The bisector of planes $4x+3y-5z=0$ & $5x-12y+13z=0$ can be given by

$\dfrac { 4x+3y-5z }{ \sqrt { { 4 }^{ 2 }+{ 3 }^{ 2 }+{ 5 }^{ 2 } }  } \pm \dfrac { 5x-12y+13z }{ \sqrt { { 5 }^{ 2 }+12^{ 2 }+13^{ 2 } }  } =0$

$\Rightarrow 52x+39y-65z\pm \left( 25x-60y+65z \right) =0$

$\Rightarrow 11x-3y=0$ and $27x+99y-130z=0$

Ans: A

The equation of the plane bisecting the acute angle between the planes $\displaystyle x - y + z - 1 = 0$ and $\displaystyle x + y + z = 2$ is

  1. $\displaystyle x + z = \frac{3}{2}$

  2. $\displaystyle 2y = 1$

  3. $\displaystyle x - y - z = 3$

  4. None of these


Correct Option: A
Explanation:

Given planes are  $ x-y+z-1=0.....(1)$ and $x+y+z-2=0.........(2)$
Therefore equation of plane bisecting these planes are
$\dfrac{x-y+z-1}{\sqrt{3}}=\pm\dfrac{x+y+z-2}{\sqrt{3}}$
$\Rightarrow x+z = \dfrac{3}{2}.......(3)$ and $y = \dfrac{1}{2}.......(4)$
If $\theta$ is the angle between (2) and (4) then,
$  \cos\theta = \dfrac{1/2}{(1/2).(\sqrt{3})}=\dfrac{1}{\sqrt{3}}$
$\Rightarrow \theta > 45^\circ$
Hence plane (4) bisects the obtuse angle between the given planes.
Therefore equation of plane bisecting acute angle  between given plane is
$x+z = \dfrac{3}{2}$

An angle between the plane, x+y+z=5 and the line of intersection of the planes, 3x+4y+z-1=0 and 5x+8y+2z+14=0, is

  1. $

    \sin ^ { - 1 } ( 3 / \sqrt { 17 } )

    $

  2. $

    \cos ^ { - 1 } ( \sqrt { 3 / 17 } )

    $

  3. $

    \sin ^ { - 1 } ( \sqrt { 3 / 17 } )

    $

  4. $

    \cos ^ { - 1 } ( 3 / \sqrt { 17 } )

    $


Correct Option: A

The angle between the planes $\bar { r } \cdot \bar { n _{ 1 } } =\left| \bar { { d } _{ 1 } }  \right| $ and $\bar { r } \cdot \bar { n _{ 2 } } =\left| \bar { { d } _{ 2 } }  \right| $

  1. $\cos^{-1}\left(\displaystyle \frac{\bar{n _{1} }\cdot\bar{d} _{1}}{\left | \bar{d} _{1}\times \bar{d} _{2} \right |}\right)$

  2. $\cos^{-1}\left(\displaystyle \frac{\bar{n} _{1}.\bar{n} _{2}}{\left |\bar{n} _{1} \right |\left | \bar{n} _{2} \right |}\right)$

  3. $\cos^{-1}\left(\displaystyle \frac{\bar{n} _{1}\bar{n} _{2}}{\bar{n} _{1}\times \bar{n} _{2} }\right)$

  4. $\cos^{-1}\left(\displaystyle \frac{\bar{n} _{1}\cdot \left | \bar{d} _{2} \right |}{\left | \bar{n} _{1} \right |\left | \bar{n} _{2} \right |}\right)$


Correct Option: B
Explanation:

Given planes are $\bar { r } \cdot \bar { n _{ 1 } } =\left| \bar { { d } _{ 1 } }  \right| $ and $\bar { r } \cdot \bar { n _{ 2 } } =\left| \bar { { d } _{ 2 } }  \right| $ 

Angle between the planes is same as the angle between the normal vectors.
Hence the angle  $\theta=\cos^{-1}\left(\dfrac{\bar{n} _1.\bar{n} _2}{|\bar{n} _1||\bar{n} _2|}\right)$

The tetrahedron has vertices $0\left ( 0,0,0 \right ),A\left ( 1,2,1 \right ),B\left ( 2,1,3 \right )$ and $C\left ( -1,1,2 \right )$, then  the angle between the faces $OAB$ and $ABC$ will be

  1. $\displaystyle \cos ^{-1}\frac{17}{31}$

  2. $30^{0}$

  3. $90^{0}$

  4. $\displaystyle \cos ^{-1}\frac{19}{35}$


Correct Option: D
Explanation:

Concept using the angle between the  phases is equal to their normals.
$\therefore$ vector $\perp$ to the face $OAB$ is $\overline{OA}\times \overline{OB}=5\hat{i}-\hat{j}-3\hat{k}$
and vector $\perp$ to the face $ABC$ is $\overline{AB}\times \overline{AC}=\hat{i}-5\hat{j}-3\hat{k}$
$\therefore$ Let $\theta$ be the angle between the faces $OAB$ and $ABC$ 
$\displaystyle \therefore \cos \theta =\frac{\left ( 5\hat{i}-\hat{j}-3\hat{k} \right )\left ( \hat{i}-5\hat{j}-3\hat{k} \right )}{\left | 5\hat{i}-\hat{j}-3\hat{k} \right |\left | \hat{i}-5\hat{j}-3\hat{k} \right |}$
$\displaystyle \therefore \cos \theta =\frac{19}{35}$

Let $A(0,0,0),B(1,1,1),C(3,2,1)$ and $D(3,1,2)$ be four points. The angle between the planes through the points $A,B,C$ and through the points $A,B,D$ is

  1. $\displaystyle \dfrac { \pi  }{ 2 } $

  2. $\displaystyle \dfrac { \pi  }{ 6 } $

  3. $\displaystyle \dfrac { \pi  }{ 4 } $

  4. $\displaystyle \dfrac { \pi  }{ 3 } $


Correct Option: D
Explanation:
Let ${n} _{1}$ and ${n} _{2}$ be the vectors normal to the palnes $ABC$ and $ABD$ respectively.
${ n } _{ 1 }=AB\times AC=-i+2j-k\\ { n } _{ 2 }=AB\times AD=i+j-2k$
Let $\theta$ be the acute angle between the planes, then $\theta$ is the acute angle between their normals ${n} _{1}$ and ${n} _{2}$
$\displaystyle \therefore \cos { \theta  } =\dfrac { \left| -1+2+2 \right|  }{ \sqrt { 6 } .\sqrt { 6 }  } =\dfrac { 3 }{ 2 } =\dfrac { 1 }{ 2 } =\cos { \dfrac { \pi  }{ 3 }  } \Rightarrow \theta =\dfrac { \pi  }{ 3 } $

The angle between two planes $\displaystyle r.n=q$ and $\displaystyle r.n'=q'$ is

  1. $\displaystyle \sin ^{-1}\left ( \frac{n.n'}{nn'} \right )$

  2. $\displaystyle \cos ^{-1}\left ( \frac{n.n'}{nn'} \right )$

  3. $\displaystyle \tan ^{-1}\left ( \frac{n.n'}{nn'} \right )$

  4. None of these


Correct Option: B
Explanation:
Given planes
$r\cdot n=q$------(1)
$r\cdot {n}'={q}'$-------(2)
Angle between two planes is between their normal vector 
$\left | n \right |\left | {n}' \right |cos\alpha=n \cdot {n}'$
$cos\alpha=\dfrac{n \cdot {n}'}{\left | n \right |\left | {n}' \right |}$
$\alpha=\cos^{-1}(\dfrac{n \cdot {n}'}{\left | n \right |\left | {n}' \right |})$

The sine of angle formed by the lateral face ADC and plane of the base ABC of the tetrahedron ABCD where $\displaystyle a\equiv (3, -2, 1); B\equiv (3, 1, 5); C\equiv (4, 0, 3)and D\equiv (1, 0, 0)is$

  1. $\displaystyle \frac{2}{\sqrt{29}}$

  2. $\displaystyle \frac{5}{\sqrt{29}}$

  3. $\displaystyle \frac{3\sqrt3}{\sqrt{29}}$

  4. $\displaystyle \frac{-2}{\sqrt{29}}$


Correct Option: B
Explanation:

$\overrightarrow { AD } =-2\hat { i } +2\hat { j } -\hat { k } ,\overrightarrow { Ac } =\hat { i } +2\hat { j } +2\hat { k } ,\overrightarrow { AB } =3\hat { j } +4\hat { k } : \ \overrightarrow { n _{ 1 } } =\overrightarrow { AD } \times \overrightarrow { AC } =\begin{vmatrix} \hat { i }  & \hat { j }  & \hat { k }  \ -2 & 2 & -1 \ 1 & 2 & 2 \end{vmatrix}=6\hat { i } +3\hat { j } -6\hat { k } =3\left( 2\hat { i } +\hat { j } -2\hat { k }  \right) \ \overrightarrow { n _{ 2 } } =\overrightarrow { AC } \times \overrightarrow { AB } =\begin{vmatrix} \hat { i }  & \hat { j }  & \hat { k }  \ 1 & 2 & 2 \ 0 & 3 & 4 \end{vmatrix}=2\hat { i } -4\hat { j } +3\hat { k } : \ \left| \overrightarrow { n _{ 1 } } \times \overrightarrow { n _{ 2 } }  \right| =3\begin{vmatrix} \hat { i }  & \hat { j }  & \hat { k }  \ 2 & 1 & -2 \ 2 & -4 & 3 \end{vmatrix}=3\left( 5\hat { i } -10\hat { j } -10\hat { k }  \right) \ \sin  \theta =\dfrac { 5 }{ \sqrt { 29 }  } \left( \because \sin  \theta =\dfrac { \left| \overrightarrow { n _{ 1 } } \times \overrightarrow { n _{ 2 } }  \right|  }{ \left| \overrightarrow { n _{ 1 } }  \right| \left| \overrightarrow { n _{ 2 } }  \right|  }  \right) $

The equation of a plane bisecting the angle between the plane $2x -y + 2z + 3 = 0$ and $3x- 2y + 6z + 8 = 0$ is

  1. $5x - y - 4z - 45 = 0$

  2. $5x - y - 4z -3 = 0$

  3. $23x - 13y + 32z + 45 = 0$

  4. $23x - 13y + 32z + 5 = 0$


Correct Option: B,C
Explanation:
Given planes
$2x-y+2z+3=0,\quad 3x-2y+6z+8=0$ for any set of planes, plane bisecting the two planes is obtained by
$\cfrac { { \Pi  } _{ 1 } }{ \left| { \Pi  } _{ 1 } \right|  } =\pm \cfrac { { \Pi  } _{ 2 } }{ \left| { \Pi  } _{ 2 } \right|  } $
By substituting
$\cfrac { 2x-y+2z+3 }{ \sqrt { 4+1+{ 2 }^{ 2 } }  } =\pm \cfrac { 3x-2y+6z+8 }{ \sqrt { 9+{ 2 }^{ 2 }+36 }  } \\ \cfrac { 2x-y+2z+3 }{ 3 } =\pm \cfrac { 3x-2y+6z+8 }{ 7 } $
First Case:
$7(2x-y+2z+3)=3(3x-2y+6z+8)$
On solving: $5x-y-4z-3=0$
Second Case:
$7(2x-y+2z+3)=-3(3x-2y+6z+8)$
We get: $23x-13y+32z+45=0$

Equation of the plane bisecting the acute angle between the planes  $x+2y-2z-9=0,\ 3x-4y+12z-26=0$ is

  1. $2(4x+17y-31z)+36=0$

  2. $8x-16y+4z+27=0$

  3. $16x-32y+8z-27=0$

  4. None of these


Correct Option: D
Explanation:

The equation of the given planes are

$3x-4y+12z-26=0$   ...$(1)$

$x+2y-2z-9=0$   ...$(2)$

$\therefore $the equations of the planes bisecting the angles between them are $\displaystyle\dfrac { 3x-4y+12z-26 }{ \sqrt { 9+16+144 }  } =\pm \dfrac { x+2y-2z-9 }{ \sqrt { 1+4+4 }  } $

$\Rightarrow 3\left( 3x-4y+12z-26 \right) =\pm 13\left( x+2y-2z-9 \right) $

$\Rightarrow 4x+38y-62z-39=0$   ...$(3)$

and $22x+14y+102-195=0$   ...$(4)$

If $\theta $ isthe angle between the planes $(4)$ and $(2)$, we have 

$\displaystyle\cos { \theta  } =\dfrac { 1\left( 22 \right) +2\left( 14 \right) -2\left( 10 \right)  }{ \sqrt { 1+4+4 } .\sqrt { 484+196+100 }  } =\sqrt { \dfrac { 5 }{ 39 }  } $

$\displaystyle\Rightarrow \sin { \theta  } =\sqrt { 1-\cos ^{ 2 }{ \theta  }  } =\sqrt { 1-\dfrac { 5 }{ 39 }  } =\sqrt { \dfrac { 34 }{ 39 }  } $

$\displaystyle\Rightarrow \tan { \theta  } =\sqrt { \dfrac { 34 }{ 5 }  } >1\Rightarrow \theta >{ 45 }^{ O }$

Hence, the plane $(4)$ bisects the obtuse angle between the given plane. Thus the other plane $(3)$ bisects the acute angle.

$\therefore 4x+38y-62z-36=0$

Equation of the plane bisecting the angle between the planes $2x-y+2z+3=0$ and $3x-2y+6z+8=0$

  1. $5x-y-4z-45=0$

  2. $5x-y-4z-3=0$

  3. $23x+13y+32z-45=0$

  4. $23x-13y+32z+5=0$


Correct Option: B
Explanation:

The equation of bisector is,
$\dfrac{2x-y+2z+3}{\sqrt{2^2+1^2+2^2})} = \pm \dfrac{3x-2y+6z+8}{\sqrt{3^2+2^2+6^2}}$
$\Rightarrow 7(2x-y+2z+3) = \pm 3(3x-2y+6z+8)$
$\Rightarrow 5x-y-4z-3=0$ or $23x-13y+32z+45=0$
Hence, option 'B' is correct.

Let two planes $p _{1}:2x-y+z=2$, and $p _{2}:x+2y-z=3$ are given. The equation of the acute angle bisector of planes $P _{1}$ and $P _{2}$ is

  1. $x-3y+2z+1=0$

  2. $3x+y-5=0$

  3. $x+3y-2z+1=0$

  4. $3x +z+7=0$


Correct Option: B
Explanation:

Given, $2x-y+z=2$    ...$(i)$

and $x+2y-z=3$    ...$(ii)$

$\therefore$  Equation of the planes bisecting the angles between them are. $\displaystyle\dfrac { 2x-y+z-2 }{ \sqrt { 4+1+1 }  } =\pm \dfrac { x+2y-z-3 }{ \sqrt { 1+4+1 }  } $

$\Rightarrow 2x-y+z-2=\pm x+2y-z-3$  ...$(iii)$

and $3x+y-5=0$    ...$(iv)$

If $\theta $ be the angle between the plane $(iv)$ and $(ii)$, we have $\displaystyle\cos { \theta =\dfrac { 1\left( 3 \right) +2\left( 1 \right) -2\left( 0 \right)  }{ \sqrt { 1+4+1 } \quad \quad \sqrt { 9+1+25 }  }  } =\dfrac { 5 }{ \sqrt { 210 }  } $

$\displaystyle\Rightarrow \tan { \theta =\dfrac { 5 }{ \sqrt { 185 }  }  } <1$

$\therefore \quad \theta <{ 45 }^{ o }$

Hence, equation of the acute angle of bisects is $3x+y-5=0$.

Two planes are prependicular  to one another. One of them contains vector $\vec{a}, \vec{b}$ and the other contains $\vec{c}, \vec{d}$ then $(\vec{a} \times \vec{b}) . (\vec{c}\times \vec{d}) = $

  1. $1$

  2. $0$

  3. $[\vec{a}   \vec{b}    \vec{c} ]$

  4. $[ \vec{b}    \vec{c}    \vec{d} ]$


Correct Option: B
Explanation:

Let plane $P$, contains $a,b$ vector
$\vec{n} _{1}=\ \vec{a}\times \vec{b}$
Plane $P _{2}$ contain $\vec{c},\vec{d}$ vector
$\vec{n} _{2}=\vec{c}\times \vec{d}$
If $ P _{1}\perp P _{2}$ than $ n _{1}\perp\ n _{2}$
$(\vec{a}\times \vec{b}).(\vec{c}\times \vec{d})=0$

Tetrahedron has Vertices at $O(0,0,0)$ , $A(1,2, 1)$ , $B(2,1,3)$ , $C(-1,1,2)$ . Then the angle between the faces $OAB$ and $ABC$ will be

  1. $\cos^{-1} (\dfrac{19}{35})$


  2. $\cos^{-1} (\dfrac{17}{31})$

  3. $30^{0}$

  4. $90^{0}$


Correct Option: A
Explanation:

$n _{1}= \overrightarrow{OA}\times \overrightarrow{OB}= \begin{vmatrix}\hat{i} &\hat{j}  &\hat{k} \1  &2  &1 \2  &1  &3 \end{vmatrix}= 5\hat{i}-\hat{j}-3\hat{k}$


$n _{2}=\overrightarrow{AB}\times \overrightarrow{AC}= \begin{vmatrix}\hat{i} &\hat{j}  &\hat{k} \1  &-1  &2 \-2  &-1  &1 \end{vmatrix}= \hat{i}-5\hat{j}-3\hat{k}$

$\cos \theta = \dfrac{\vec n _{1}-\vec n _{2}}{\left | n _{1} \right |\left | n _{2} \right |}$

$\theta = \cos^{-1}\left ( \dfrac{19}{35} \right )$

Consider the planes $3x-6y+2z+5=0$ and $4x-12y+3z=3$. The plane $67x-162y+47z+44=0$ bisects the angle between the given planes which-

  1. Contains origin

  2. Is acute

  3. Is obtuse

  4. None of these


Correct Option: A,B
Explanation:

For $3x-6y+2z+5=0$ and $-4x+12y-3z+3=0$ bisector are
$\displaystyle \frac { 3x-6y+2z+5 }{ \sqrt { 9+36+4 }  } =\pm \frac { -4x+12y-3z+3 }{ \sqrt { 16+144+9 }  } $
The plane which bisects the angle between the plane that contains the origin
$13\left( 3x-6y+2z+5 \right) =7\left( -4x+12y-3z+3 \right) \ \Rightarrow 67x-162y+47z+44=0$
Further $3\times \left( -4 \right) +\left( -6 \right) \times 12+2\times \left( -3 \right) <0$
Hence, the origin lies in the acute angle.

Angle between planes $2x-y+z$ $=$ $6$ and $x+y+2z$ $=$ $7,$ is -

  1. $\dfrac { \pi }{ 4 } $

  2. $\dfrac { \pi }{ 2 } $

  3. $\dfrac { \pi }{ 3 } $

  4. $\dfrac {- \pi }{ 4 } $


Correct Option: C
Explanation:
Plane $1$: $2x-y+z=6$
normal vector is $\bar{n _1}=2\hat{i}-\hat{j}+\hat{k}$
Plane $2$: $x+y+2z=7$
normal vector is $\bar{n _2}=\hat{i}+\hat{j}+2\hat{k}$
Angle between planes is same as the angle between their normal.
$\Rightarrow \cos\theta =\dfrac{\bar{n _1}\cdot\bar{n _2}}{|\bar{n _1}||\bar{n _2}|}$
$=\dfrac{(2\hat{i}-\hat{j}+\hat{k})\cdot(\hat{i}+\hat{j}+2\hat{k})}{(\sqrt{4+1+1})\sqrt{1+1+4}}$
$=\left|\dfrac{2-1+2}{\sqrt{6}\cdot \sqrt{6}}\right|$
$=\dfrac{3}{6}$
$=\dfrac{1}{2}$
$\Rightarrow \cos\theta =\dfrac{1}{2}$
$\Rightarrow \theta =\dfrac{2}{3}$.

The equation of the plane bisecting the angle between the planes $\displaystyle 3x +4y = 4$ and $\displaystyle 6x - 2y + 3z + 5 = 0$ that contains the origin, is

  1. $\displaystyle 9x - 38y + 15z + 43 = 0$

  2. $\displaystyle 51x + 18y + 15z = 3$

  3. $\displaystyle 9x + 2y + 3z + 1 = 0$

  4. $\displaystyle 17x + 9y + 15z = 26$


Correct Option: B
Explanation:
Equation of given planes can be written as
 $3x+4y=4 , 6x−2y+3z+5=0$

formula is
  $\dfrac {a _1x+b _1y+c _1z+d _1}{\sqrt {a _1^2+b _1^2+c _1^2}}$ = +  or  - $\dfrac {a _2x+b _2y+c _2z+d _2}{\sqrt {a _2^2+b _2^2+c _2^2}}$

by substituting the values in the given formula we will get 

$\dfrac {3x+4y+0z+-41}{\sqrt {3^2+4^2+0^2}}$ = + or - $\dfrac {6x+-2y+3z+5}{\sqrt {6^2+(-2)^2+3^2}}$

$\Rightarrow$ $21x+28y-28 = +\  or\  - 30x-10y+160+25$

so when adding the above equation we will get $51x + 18y + 160z - 3 = 0$

is the plane bisecting the angle containing the origin, and when subtracting we will get $9x - 38y + 160z + 53 = 0$ is the other bisecting plane.

Hence the plane $51x + 18y + 160z - 3 = 0\  or\  51x + 18y + 160z  = 3$ bisects the acute angle and therefore origin lies in the acute angle.

The equation of the plane bisecting the obtuse angle between the planes $\displaystyle x+y+z= 1$ and $\displaystyle x+2y-4z= 5$ is

  1. $\displaystyle \left ( \sqrt{7}-1 \right )x+\left ( \sqrt{7}-2 \right )y+\left ( \sqrt{7}+4 \right )z+5-\sqrt{7}= 0$

  2. $\displaystyle \left ( \sqrt{7}+1 \right )x+\left ( \sqrt{7}+2 \right )y+\left ( \sqrt{7}+4 \right )z+5-\sqrt{7}= 0$

  3. $\displaystyle \left ( \sqrt{7}+1 \right )x+\left ( \sqrt{7}+2 \right )y+\left ( \sqrt{7}-4 \right )z=\sqrt{7}$

  4. None of these


Correct Option: D
Explanation:

Given planes are  $ x+y+z-1=0.....(1)$ and $x+2y-4z-5=0.........(2)$
Therefore equation of planes bisecting these planes are
$\dfrac{x+y+z-1}{\sqrt{3}}=\pm\dfrac{x+2y-4z-5}{\sqrt{21}}$

$\Rightarrow x+y+z-1=\pm\dfrac{x+2y-4z-5}{\sqrt{7}}$

$\Rightarrow (\sqrt{7}-1) x+(\sqrt{7}-2)y+(\sqrt{7}+4)z = \sqrt{7}+5 ...(3)$ and $(\sqrt{7}+1) x+(\sqrt{7}+2)y+(\sqrt{7}-4)z = \sqrt{7}-5  ....(4)$
If $\theta$ is the angle between $(1)$ and $(3)$, then

$  \cos\theta = \dfrac{(\sqrt{7}-1).1+(\sqrt{7}-2).1+(\sqrt{7}+4).1}{(\sqrt{(\sqrt{7}-1)^2+(\sqrt{7}-2)^2+(\sqrt{7}+4)^2}).(\sqrt{3})}= \dfrac{3\sqrt{7}+2}{(\sqrt{40+2\sqrt{7}}).(\sqrt{3})}> \dfrac{1}{2}$

$\Rightarrow \theta > 45^\circ$
Hence, plane $(1)$ bisects the obtuse angle between the given planes.
Therefore equation of plane bisecting acute angle  between given plane is
$(\sqrt{7}-1) x+(\sqrt{7}-2)y+(\sqrt{7}+4)z = \sqrt{7}+5 $

Hence, option 'D' is correct.

Let two planes $p _{1}:2x-y+z=2$, and $p _{2}:x+2y-z=3$ are given. The equation of the bisector of angle of the planes  $P _{1}$ and $P _{2}$ which does not contains origin, is

  1. $x-3y+2z+1=0$

  2. $x+3y=5$

  3. $x+3y+2z+2=0$

  4. $3x+y=5$


Correct Option: D
Explanation:
Given planes are $p _{1}:2x-y+z=2$ and $p _{2}:x+2y-z=3$

Normals to the planes
$N _1:\dfrac{1}{\sqrt{6}}(2,-1,1)$
$N _2:\dfrac{1}{\sqrt{6}}(1,2,-1)$

Let $N$ be the normal vector of angle bisector
$N=  N _1+N _2$ or $ N _1-N _2$
$N = (3,1,0)$ or $(1,-3,2)$

The equation of plane is
$P = P _1+ \lambda P _2$
$P= 2x-y+z-2 + \lambda (x+2y-z -3) $

If $N = (3,1,0)$, then $\lambda = 1$,
Equation of Plane $=  P = 3x+y- 5$
It does not pass through origin.

Hence, option D is correct.
- Hide questions