0

Normal to an ellipse - class-XI

Description: normal to an ellipse
Number of Questions: 53
Created by:
Tags: ellipse circles and conics section two dimensional analytical geometry-ii maths
Attempted 0/53 Correct 0 Score 0

If a normal is drawn at point $P$ of ellipse $ \dfrac{x^{2}}{a^{2}}+\dfrac{y^{2}}{b^{2}}=1$, then the maximum distance from centre of ellipse will be $a-b$ 

  1. True

  2. False


Correct Option: A

If the normal at any point $P$ of the ellipse $\dfrac{x^2}{a^2} + \dfrac{y^2}{b^2} = 1$ meets the axes in $G$ and $g$ respectively, then $|PG| : |Pg|$ is equal to 

  1. $a:b$

  2. $a^2:b^2$

  3. $b^2:a^2$

  4. $b:a$


Correct Option: A

One foot of normal of the ellipse $4x^2$ $+$ 9$y^2$ $= 36 $, that is parallel to the line $2x + y = 3 $, is

  1. $\left ( \dfrac{9}{8}, \dfrac{5}{8} \right )$

  2. $\left ( \dfrac{9}{8}, \dfrac{8}{5} \right )$

  3. $\left ( \dfrac{8}{9}, \dfrac{8}{5} \right )$

  4. None


Correct Option: B

If the normal at any point on the ellipse $\dfrac { { x }^{ 2 } }{ { a }^{ 2 } } +\dfrac { { y }^{ 2 } }{ { b }^{ 2 } } =1$ meets the axes in $G$ and $g$ respectively, then $PG:Pg=$

  1. $a:b$

  2. ${ a }^{ 2 }:{ b }^{ 2 }$

  3. $b:a$

  4. ${ b }^{ 2 }:{ a }^{ 2 }$


Correct Option: A

The equation of normal at the point $(0, 3)$ of the ellipse $9x^2 + 5y^2 = 45$ is

  1. $y-  3 = 0$

  2. $y + 3 = 0$

  3. $x$-axis

  4. $y$-axis


Correct Option: C
Explanation:

$9x^2+5y^2=45$


Differentiating with respect to $x$, we get,

$18x+10y\dfrac{dy}{dx}=0$

$\dfrac{dy}{dx}=-\dfrac{18x}{10y}$

Therefore, Slope of tangent at $(0,3)=\dfrac{-0}{30}=0$

Slope of normal = $\dfrac{1}{0}$

The equation of normal is :
$y-3=\dfrac{1}{0}(x-0)$
$x-0=0$
$x=0$

Find the equation of the normal to the ellipse $9x^2 + 16y^2 = 288$ at the point $(4, 3).$

  1. $4x-3y=7$

  2. $3x-4y=7$

  3. $4x+3y=7$

  4. $3x+4y=7$


Correct Option: A
Explanation:

Given ellipse may be written as, $\displaystyle \frac{x^2}{32}+\frac{y^2}{18}=1$
$\Rightarrow a^2 = 32, b^2 = 18$
Hence required normal at $(4,3)$ is given by,
$\displaystyle y-3=\frac{3\times 32}{4\times 18}(x-4)\Rightarrow y-3=\frac{4}{3}(x-4)\Rightarrow 4x-3y=7$

The line $y=mx-\dfrac{\left(a^{2}-b^{2}\right)m}{\sqrt{a^{2}b^{2}m^{2}}}$ is normal to  the ellipse $\dfrac{x^{2}}{a^{2}}+\dfrac{y^{2}}{b^{2}}=1$ for all values of $m$ belongs to 

  1. $\left(0,1\right)$

  2. $\left(0,\infty\right)$

  3. $R$

  4. $none\ of\ these$


Correct Option: A

The number of normals to the ellipse $\dfrac { { x }^{ 2 } }{ 25 } +\dfrac { { y }^{ 2 } }{ 16 } =1$ which are tangents to the circle ${ x }^{ 2 }+{ y }^{ 2 }=9$ is

  1. 1

  2. 2

  3. 3

  4. 0


Correct Option: A

The equation of the normal to the ellipse $\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1$ at the end of latus rectum in quadrant $1^{st}$ and $4^{th}$ is

  1. $x-ey-ae^3=0$

  2. $x+ey-ae^3=0$

  3. $y-ex-be^3=0$

  4. $y+ex-be^3=0$


Correct Option: A,B
Explanation:

Ellipse:$\cfrac { { x }^{ 2 } }{ a^{ 2 } } +\cfrac { { y }^{ 2 } }{ { b^{ 2 } } } =$

ends of L.R in 1st and 4th quadrant is $L(ae,\cfrac { b^{ 2 } }{ a } )$ and $L'(ae,\cfrac { -b^{ 2 } }{ a } )$
equation of normal at $L$ and $L'$
at $L$, $\Rightarrow \cfrac { a^{ 2 }x }{ ae } -\cfrac { b^{ 2 }y }{ \cfrac { b^{ 2 } }{ a }  } =a^{ 2 }-b^{ 2 }$
$ \Rightarrow ax-aey=e(a^{ 2 }-b^{ 2 })$
$ \Rightarrow x-ey=\cfrac { a^{ 2 } }{ a } (e^{ 2 })(e)$
$ \Rightarrow x-ey-ae^{ 3 }=0---(i)$
at $L'$ $\Rightarrow \cfrac { a^{ 2 }x }{ ae } -\cfrac { b^{ 2 }y }{ -\cfrac { b^{ 2 } }{ a }  } =a^{ 2 }e^{ 2 }$
$\Rightarrow x+ey-ae^{ 3 }=0---(ii)$

If line $y+3x=c$ is normal of the ellipse ${ x }^{ 2 }+3{ y }^{ 2 }=3$ then equation of normal is-

  1. $y-3x\pm \sqrt { 3 } =0$

  2. $y+3x\pm \sqrt { 3 } =0$

  3. $y+3x\pm 3 =0$

  4. $y+3x\pm 1 =0$


Correct Option: B
Explanation:

If $y=mx+c$ is normal to ellipse
${ c }^{ 2 }={ m }^{ 2 }\cfrac { { \left( { a }^{ 2 }-{ b }^{ 2 } \right)  }^{ 2 } }{ { a }^{ 2 }+{ b }^{ 2 }{ m }^{ 2 } } $
${ x }^{ 2 }+3{ y }^{ 2 }=3$
$\cfrac { { x }^{ 2 } }{ 3 } +\cfrac { { y }^{ 2 } }{ 12 } =1$
${ a }^{ 2 }=3,b=1$
$y+3x=c$
$m=-3$
${ c }^{ 2 }={ (-3) }^{ 2 }\cfrac { { \left( { a }^{ 2 }-{ b }^{ 2 } \right)  }^{ 2 } }{ { a }^{ 2 }+{ b }^{ 2 }{ m }^{ 2 } } =9\times \cfrac { { (3-1) }^{ 2 } }{ 3+9 } $
$=\cfrac { 9\times 4 }{ 12 } =3$

Equation of normal
$y+3x\pm \sqrt { 3 } =0$

Length of latusrectum of the ellipse $\dfrac{x^{2}}{4}+\dfrac{y^{2}}{b^{2}}=1$, if the normal, at an end of latusrectum passes through one extremity of the minor axis, then equation of eccentricity of ellipse is

  1. $e^4+e^2-1=0$

  2. $e^3+e^2-1=0$

  3. $e^4+e^2+1=0$

  4. none of these


Correct Option: A
The domain of $f(x)=\dfrac 1{\sqrt {x-[x]}}$ is 
  1. $R$

  2. $Z$

  3. $R-Z$

  4. $None\ of\ these$


Correct Option: C
Explanation:

The function is defined as 

$f(x)=\dfrac 1{\sqrt {x-[x]}}$

The function is not defined if

$\sqrt {x-[x]}=0$

$\implies x-[x]=0$

$\implies x=[x]$

This happens only in the case of Integers 

So The function is not defined at Integer Values

Hence , The Domain of function is $R-Z$

The normal of the ellipse $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ at a point $P(x _1,y _1)$ on  it, meets the x-axis in $G$. $PN$ is perpendicular to $OX$, where $O$ is origin. The value of $\frac{l(OG)}{l(ON)}$ is -

  1. $e$

  2. $e^2$

  3. $e^3$

  4. $e^2-1$


Correct Option: C

The maximum number of normals that can be drawn from any point outside of an ellipse, in general, is 

  1. $2$

  2. $3$

  3. $1$

  4. $4$


Correct Option: A

The line $y = mx - \displaystyle \frac{(a^2 - b^2)m }{\sqrt{a^2+ b^2 m^2}}$ is normal to the ellipse $\displaystyle \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ for all values of $m$ belongs to:

  1. $(0, 1)$

  2. $(0, \infty)$

  3. $R$

  4. None of these


Correct Option: C
Explanation:

The equation of the normal to the given ellipse at the point $P(a  \cos  \theta,  b   \sin  \theta)$ is $ax  \sec  \theta - by  \cos ec \theta = a^2 - b^2$.
$\Rightarrow    \displaystyle y = \left ( \frac{a}{b} \tan  \theta \right)  x - \frac{(a^2 - b^2)}{b} \sin \theta$      (i)
Let      $\displaystyle \frac{a}{b} \tan  \theta = m$, so that
$\displaystyle \sin \theta = \frac{bm}{\sqrt{a^2 + b^2 m^2}}$
Hence, the equation of the normal Equation (i) becomes
$ y = mx - \displaystyle \frac{(a^2 - b^2)m}{\sqrt{a^2 + b^2 m^2}}$
$\therefore    m  \in  R,$ as $m  = \dfrac{a}{b} tan  \theta  \in  R.$

If the length of perpendicular drawn from origin to any normal to the ellipse $\cfrac{{x}^{2}}{16}+\cfrac{{y}^{2}}{25}=1$ is $l$, then $l$ cannot be

  1. $4$

  2. $5/2$

  3. $1/2$

  4. $2/3$


Correct Option: A,B,C,D

If the normal at an end of a latus-rectum of an ellipse $\displaystyle\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ passes through one extremity of the minor axis, the eccentricity of the ellipse is given by:

  1. $e^2=5$

  2. $\displaystyle e^2=\frac{\sqrt{5}+1}{2}$

  3. $\displaystyle e=\frac{\sqrt{5}-1}{2}$

  4. $\displaystyle e^2=\frac{\sqrt{5}-1}{2}$


Correct Option: D
Explanation:

Let $a>b$, then one of latus rectum of the ellipse is $(ae, \cfrac{b^2}{a})$

Thus equation of normal at this point is given by,

$\cfrac{a^2x}{ae}-\cfrac{b^2y}{b^2/a}=a^2e^2$
Given it passes through one of minor axis ,which is $(0,-b)$
$\Rightarrow \cfrac{a^2(0)}{ae}-\cfrac{b^2(-b)}{b^2/a}=a^2e^2$
$\Rightarrow e^2=\cfrac{b}{a}$

Now using $e^2=1-\cfrac{b^2}{a^2}$
we get,  $e^4+e^2-1=0$
$e^2=\cfrac{-1+\sqrt{5}}{2}, \cfrac{-1-\sqrt{5}}{2}$(not possible)

$\therefore e^2=\cfrac{-1+\sqrt{5}}{2}$

If the normal at one end of the latus rectum of an ellipse $\displaystyle\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ passes through one extremity of the minor axis, then:

  1. $e^4-e^2+1=0$

  2. $e^2-e+1=0$

  3. $e^2+e+1=0$

  4. $e^4+e^2-1=0$


Correct Option: D
Explanation:

Let $a>b$, then one of latus rectum of the ellipse is $(ae, \cfrac{b^2}{a})$
Thus equation of normal at this point is given by,
$\cfrac{a^2x}{ae}-\cfrac{b^2y}{b^2/a}=a^2e^2$
Given it passes through one of minor axis ,which is $(0,-b)$
$\Rightarrow \cfrac{a^2(0)}{ae}+\cfrac{b^2(-b)}{b^2/a}=a^2e^2$
$\Rightarrow e^2=\cfrac{b}{a}$
Now using $e^2=1-\cfrac{b^2}{a^2}$
we get,  $e^4+e^2-1=0$

The normal to the curve x$^2$ = 4y passing (1,2) is 

  1. x + y = 3

  2. x - y = 3

  3. x + y = 1

  4. x - y = 1


Correct Option: A
Explanation:
Given,

$x^2=4y$

$\Rightarrow 2x=4\dfrac{dy}{dx}$

$\therefore \dfrac{dy}{dx}=\dfrac{x}{2}$

$\dfrac{dy}{dx} _{h,k}=\dfrac{h}{2}$

$\dfrac{-1}{\dfrac{dy}{dx} _{h,k}}=-\dfrac{2}{h}$

Equation of normal

$(y-k)=-\dfrac{2}{h}(x-h)$

Given point, $(1,2)$

$(2-k)=-\dfrac{2}{h}(1-h)$

$k=2+\dfrac{2}{h}(1-h)$

$\therefore k=\dfrac{h^2}{4}$

$\Rightarrow \dfrac{h^2}{4}2+\dfrac{2}{h}(1-h)$

upon solving, we get,

$h=2,k=1$

Hence, the equation of normal is 

$(y-1)=\dfrac{-2}{2}(x-2)$

$y-1=-x+2$

$x+y=3$

The line $l x + m y = n$ is a normal to the ellipse $\dfrac { x ^ { 2 } } { a ^ { 2 } } + \dfrac { y ^ { 2 } } { b ^ { 2 } } = 1 ,$ if 

  1. $\dfrac { a ^ { 2 } } { l^ { 2 } } + \dfrac { \left( a ^ { 2 } - b ^ { 2 } \right) ^ { 2 } } { n ^ { 2 } } = \dfrac { b ^ { 2 } } { m ^ { 2 } }$

  2. $\dfrac { a ^ { 2 } } { l ^ { 2 } } + \dfrac { b ^ { 2 } } { m ^ { 2 } } = \dfrac { \left( a ^ { 2 } - b ^ { 2 } \right) ^ { 2 } } { n ^ { 2 } }$

  3. $\dfrac { \left( a ^ { 2 } - b ^ { 2 } \right) ^ { 2 } } { n ^ { 2 } } + \dfrac { b ^ { 2 } } { m ^ { 2 } } = \dfrac { a ^ { 2 } } { l ^ { 2 } }$

  4. none of these


Correct Option: B
Explanation:
Normals of slope m to the ellipse are given by

$y=mx\pm \dfrac{m(a^2-b^2)}{\sqrt{a^2+b^2m^2}}$

so for $y=mx+c$

$c=\pm\dfrac{m(a^2-b^2)}{\sqrt{a^2+b^2m^2}}$

$c^2=\dfrac{m^2(a^2-b^2)^2}{a^2+b^2m^2}$

for $lx+my+n=0$

$y=-\dfrac{1}{m}x-\dfrac{n}{m}$

$c=-n/m$

slope$=-l/m$

$c^2=\dfrac{m^2(a^2-b^2)^2}{a^2+b^2m^2}$

$\dfrac{n^2}{m^2}=\dfrac{\dfrac{l^2}{m^2}\left(a^2-b^2\right)^2}{a^2+b^2\dfrac{l^2}{m^2}}$

$\dfrac{a^2m^2+b^2l^2}{l^2m^2}=\dfrac{(a^2-b^2)^2}{n^2}$

$\dfrac{a^2}{l^2}+\dfrac{b^2}{m^2}=\dfrac{(a^2-b^2)^2}{n^2}$.

The line $5x - 3y = 8\sqrt{2}$ is a normal to the ellipse $\dfrac{x^2}{25} + \dfrac{y^2}{9} = 1$. If $\theta$ be the eccentric angle of the foot of this normal , then '$\theta$' is equal to

  1. $\dfrac{\pi}{6}$

  2. $\dfrac{\pi}{3}$

  3. $\dfrac{\pi}{4}$

  4. $\dfrac{\pi}{2}$


Correct Option: C
Explanation:
From the equation of ellipse given, we have; $a=5,b=3$

Therefore any point on the ellipse $\left( 5cos\theta , 3sin\theta  \right) .$

Normal at this point to the given ellipse is 
$ 5x sec\theta -3y cosec\theta =25-9=16------(1)$

 Also the equation of given normal is $ 5x-3y=8\sqrt { 2 } -----(2)$

 Also the equation of the normal $(1)$ and $(2)$,

$ \Longrightarrow \dfrac { 5sec\theta  }{ 5 } =\dfrac { 3cosec\theta  }{ 3 } =\dfrac { 16 }{ 8\sqrt { 2 }  }$

$ \Longrightarrow sin\theta =cos\theta =\frac { 1 }{ \sqrt { 2 }  }$

$\Longrightarrow \theta =\frac { \Pi  }{ 4 } $

Option (c) is correct.

Let $L$ be an end of the latus rectum of $y^2 = 4x$. The normal at $L$ meets the curve again at $M$. The normal at $M$ meets the curve again at $N$. The area of $\Delta LMN$ is

  1. $\dfrac{1280}{9} sq.$ units

  2. $\dfrac{640}{9} sq.$ units

  3. $\dfrac{320}{9} sq.$ units

  4. $\dfrac{160}{9} sq.$ units


Correct Option: A

The line $2x+y =3$ cuts the ellipse $4x^2+y^2 =5$ at P and Q . If $\theta$ be the angle between the normals  at these point then $tan \theta$ =

  1. $1/2$

  2. $3/4$

  3. $3/5$

  4. $5$


Correct Option: C

The equation of the normal to the ellipse $\displaystyle x^{2} + 4y^{2} = 16$ at the end of the latus rectum in the first quadrant is

  1. $\displaystyle 2x + \sqrt{3} \left ( y + 3 \right ) = 0$

  2. $\displaystyle 2x = \sqrt{3} \left ( y+ 3 \right )$

  3. $\displaystyle \sqrt{3} x = 2 \left ( y + 3 \right )$

  4. none of these


Correct Option: B
Explanation:

Given ellipse may be written as, $\displaystyle \cfrac{x^{2}}{16} + \cfrac{y^{2}}{4} = 1$
$\Rightarrow a^2=16, b^2=4, \therefore e=\sqrt{1-\dfrac14}=\dfrac{\sqrt{3}}2$
Then latus rectum of the ellipse in the first quadrant is $(ae, \cfrac{b^2}{a})\equiv (2\sqrt{3},1)$

Then the point form equation of normal at point $(x _1,y _1)$ is $y-y _1=\displaystyle\frac {y _1a^2}{x _1b^2}(x-x _1), x _1\neq 0$
Thus equation of normal at this point is given by,
$\cfrac{16x}{2\sqrt{3}}-\cfrac{4y}{1}=12$
$\Rightarrow 2x=\sqrt{3}(y+3)$

If the tangent drawn at a point $\left( { t }^{ 2 },2t \right) $ on the parabola ${ y }^{ 2 }=4x$ is same as normal drawn at $\left( \sqrt { 5 } \cos { \alpha  } ,2\sin { \alpha  }  \right) $ on the ellipse $\displaystyle \frac { { x }^{ 2 } }{ 5 } +\frac { { y }^{ 2 } }{ 4 } =1$, then which of following is true.

  1. $\displaystyle t=\pm \frac { 1 }{ \sqrt { 5 }  } $

  2. $\alpha =-\tan ^{ -1 }{ 2 } $

  3. $\alpha =\tan ^{ -1 }{ 2 } $

  4. None of these


Correct Option: A,B,C
Explanation:

Equation of tangent to ${ y }^{ 2 }=4x$ at $\left( { t }^{ 2 },2t \right) $ is $x=ty-{ t }^{ 2 }$   ....(1)


Equation of normal to ellipse $\displaystyle \frac { { x }^{ 2 } }{ 5 } +\frac { { y }^{ 2 } }{ 4 } =1$ at $\left( \sqrt { 5 } \cos { \alpha  } ,2\sin { \alpha  }  \right) $ is $\sqrt { 5 } \sec { \alpha x-2y\csc { \alpha  } =1 } $    ....(2)

Given (1) $=$ (2)

$\displaystyle \Rightarrow \sqrt { 5 } \sec { \alpha  } =\frac { 2\csc { \alpha  }  }{ t } =-\frac { 1 }{ { t }^{ 2 } } \Rightarrow \cos { \alpha  } =-\sqrt { 5 } { t }^{ 2 }$ and $\sin { \alpha  } =-2t$

$\displaystyle \Rightarrow \cos ^{ 2 }{ \alpha  } +\sin ^{ 2 }{ \alpha  } =5{ t }^{ 4 }+4{ t }^{ 2 }=1\Rightarrow { t }^{ 2 }=\frac { 1 }{ 5 } $   

$\therefore$ (A) is true
and $\displaystyle \frac { \sin { \alpha  }  }{ \cos { \alpha  }  } =-\frac { 2t }{ -\sqrt { 5 } { t }^{ 2 } } =\frac { 2 }{ \sqrt { 5 }  } \times \frac { 1 }{ t } =\frac { 2 }{ \sqrt { 5 }  } \times \left( \pm 5 \right) $

$\therefore \tan { \alpha  } =\pm 2$

The number of distinct normal lines from the exterior point $\displaystyle \left ( 0, : c \right ), : c > b$ , to the ellipse $\displaystyle \frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1$ is

  1. $3$

  2. $4$

  3. $2$

  4. $1$


Correct Option: D
Explanation:

Given ellipse is, $\displaystyle \cfrac{x^{2}}{a^2} + \cfrac{y^{2}}{b^2} = 1$
Thus general equation of normal to ellipse with slope $m$ is given by,
$y = mx-\cfrac{(a^2-b^2)m}{\sqrt{a^2+b^2m^2}}$
Given external point through which this line is passing is $P(0,c)$
$\Rightarrow c = -\cfrac{(a^2-b^2)m}{\sqrt{a^2+b^2m^2}}$
$\Rightarrow c^2=\cfrac{(a^2-b^2)^2m^2}{a^2+b^2m^2}$
$\Rightarrow m^2=\cfrac{c^2a^2}{(a^2-b^2)^2-c^2b^2}$


Clearly this is a polynomial of degree two so maximum number of normal that
can be drawn from point $P (0,c)$  to the ellipse is $2$, with slopes $+\infty$ and $-\infty$ corresponding to  two roots of $m.$
But the question asked for distinct normal lines, therefore answer is $1$.

Equation of the normal to the ellipse  $4 ( x - 1 ) ^ { 2 } + 9 ( y - 2 ) ^ { 2 } = 36 ,$  which is parallel to the line  $3 x - y = 1 ,$  is

  1. $3 x - y = \sqrt { 5 }$

  2. $3 x - y = \sqrt { 5 } - 3$

  3. $3 x - y = \sqrt { 5 } + 2$

  4. $3 x - y = \sqrt { 5 } ( \sqrt { 5 } + 1 )$


Correct Option: A

The number of normals that can be drawn to the curve $\displaystyle 4x^{2} + 9y^{2} = 36$ from an external point, in general, is

  1. $1$

  2. $3$

  3. $4$

  4. infinite


Correct Option: C
Explanation:

Given ellipse may be written as, $\displaystyle \cfrac{x^{2}}{9} + \cfrac{y^{2}}{4} = 1$
$\Rightarrow a^2=9, b^2=4$
Thus general equation of normal to ellipse with slope $m$ is given by,
$y = mx-\cfrac{(a^2-b^2)m}{\sqrt{a^2+b^2m^2}}=mx-\cfrac{5m}{\sqrt{9+4m^2}}$
Let any external point through wich this line is passing is $P(x _1,y _1)$
$\Rightarrow (y _1-mx _1)^2=\cfrac{25m^2}{9+4m^2}$
$\Rightarrow (y _1-mx _1)^2(9+4m^2)=25m^2$
Clearly this is a polynomial of degree four so maximum number of normal that can be drawn from point $P$ (any external point) to the ellipse is $4$ corresponding to four roots of $m.$

If  the equation of normal to the ellipse $\displaystyle  4x^{2}+9y^{2}=36$ at the point $(3, -2)$ is $ px+qy=r$. Find the value of $p+q+r.$

  1. $8$

  2. $9$

  3. $10$

  4. $12$


Correct Option: C
Explanation:

Equation of normal is $\dfrac{a^2x}{x _1}-\dfrac{b^2y}{y _1}=a^2-b^2$

$\Rightarrow \dfrac{9x}{3}-\dfrac{4y}{-2}=5$
$\Rightarrow 3x+2y=5$
Therefore, $p+q+r=10$

Find the condition that the line  $lx+my=n$ be a normal for ellipse

  1. $\displaystyle \frac{a^{2}}{l^{2}}-\frac{b^{2}}{m^{2}}=\frac{\left ( a^{2}+b^{2} \right )^{2}}{2n^{2}}$

  2. $\displaystyle \frac{a^{2}}{l^{2}}-\frac{b^{2}}{m^{2}}=\frac{\left ( a^{2}+b^{2} \right )^{2}}{n^{2}}$

  3. $\displaystyle \frac{a^{2}}{l^{2}}+\frac{b^{2}}{m^{2}}=\frac{\left ( a^{2}-b^{2} \right )^{2}}{n^{2}}$

  4. $\displaystyle \frac{a^{2}}{l^{2}}+\frac{b^{2}}{m^{2}}=\frac{\left ( a^{2}-b^{2} \right )^{2}}{2n^{2}}$


Correct Option: C
Explanation:

The equation of the normal at $\left( a\cos { \phi ,b\sin { \phi  }  } 

\right) $ to the ellipse $\cfrac { { x }^{ 2 } }{ { a }^{ 2 } }

+\cfrac { { y }^{ 2 } }{ { b }^{ 2 } } =1$ is
$ax\sec { \phi +by cosec\phi=\left( { a }^{ 2 }-{ b }^{ 2 } \right)  }  \cdot \cdot \cdot \cdot \cdot \cdot \cdot (i)$
and the equation of the line is
$lx+my=n\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot (ii)$
Now $(i)$ and $(ii)$ represent the same line
$\therefore

\quad \cfrac { a\sec { \phi  }  }{ l } =\cfrac { b cosec\phi }{ m } =\cfrac {

\left( { a }^{ 2 }-{ b }^{ 2 } \right) }{ n } $
$\Rightarrow

\sin { \phi  } =\cfrac { bn }{ m(a^2-b^2) } \quad \cos { \phi  } =\cfrac { {

\left( { an } \right)  } }{ l(a^2-b^2) } $
Squaring and adding we get
$ \cfrac { { a }^{ 2 } }{ { l }^{ 2 } } +\cfrac { { b }^{ 2 } }{ { m }^{ 2

} } =\cfrac { { \left( { a }^{ 2 }-{ b }^{ 2 } \right)  }^{ 2 } }{ { n

}^{ 2 } } $
Hence. option 'C' is correct.

Find where the line $\displaystyle 2x+y=3$ cuts the curve $\displaystyle 4x^{2}+y^{2}=5.$ Obtain the equations of the normals at the points of intersection and determine the co-ordinates of the point where these normals cut each other.

  1. $\displaystyle \left ( -1, \frac{1}{2} \right )$

  2. $\displaystyle \left ( 1, \frac{1}{2} \right )$

  3. $\displaystyle \left ( -1, \frac{-1}{2} \right )$

  4. $\displaystyle \left ( 1, \frac{-1}{2} \right )$


Correct Option: A
Explanation:

$\displaystyle P\left ( \frac{1}{2}+, 2 \right ), Q(1, 1)$ 
Tangents at P and Q are $\displaystyle 4x\cdot \frac{1}{2}+y\cdot 2=5$ and $\displaystyle 4x\cdot 1+y\cdot 1=5$ or $\displaystyle 2x+2y=5$ and $\displaystyle 4x+y=5$ 
Hence normals are $\displaystyle 2x-2y+3=0,$ $\displaystyle x-4y+3=0$
 They intersect at $\displaystyle \left ( -1, \frac{1}{2} \right )$

If $y=mx+7\sqrt{3}$ is normal to $\dfrac{x^2}{18}-\dfrac{y^2}{24}=1$ then the value of m can be?

  1. $\dfrac{2}{\sqrt{5}}$

  2. $\dfrac{4}{\sqrt{5}}$

  3. $\dfrac{1}{\sqrt{5}}$

  4. $\dfrac{2}{\sqrt{3}}$


Correct Option: A
Explanation:

$7\sqrt{3}=\dfrac{42m}{\sqrt{24-18m^2}}\Rightarrow \sqrt{3}=\dfrac{\sqrt{6}m}{\sqrt{4-3m^2}}\Rightarrow 4-3m^2=2m^2$
$m=\dfrac{2}{\sqrt{5}}$.

The normal at a point $P$ on the ellipse $x^{2}+4y^{2}=16$ meets the x-axis at $Q.$ If $M$ is the mid point of the line segment $PQ$, then locus of $M$ intersects the latus rectums of the given ellipse at the points.

  1. $\displaystyle \left ( \pm \frac{3\sqrt{5}}{7}, \pm \frac{2}{7} \right )$

  2. $\displaystyle \left ( \pm \frac{3\sqrt{5}}{2}, \pm \frac{\sqrt{19}}{4} \right )$

  3. $\displaystyle \left ( \pm 2\sqrt{3}, \pm \frac{1}{7} \right )$

  4. $\displaystyle \left ( \pm 2\sqrt{3}, \pm \frac{4\sqrt{3}}{7} \right )$


Correct Option: C
Explanation:

Given Ellipse $\dfrac { { x }^{ 2 } }{ 16 } +\dfrac { { y }^{ 2 } }{ 4 } =1$

$e=\sqrt{1-\dfrac{b^2}{a^2}} =\dfrac {\sqrt{3}}{2}$

$\because P$ is a point on the ellipse 

So, $P=\left( 4\cos { \theta  } ,2\sin { \theta  }  \right) $

Equation of normal to the ellipse $\dfrac { { x }^{ 2 } }{ 16 } +\dfrac { { y }^{ 2 } }{ 4 } =1$ at point $(x _{1},y _{1})=(4\cos \theta, 2\sin \theta)$ is given by

$a^2 y _1(x-x _1)=b^2 x _1(y-y _1)$ 

$\implies 16\times 2\sin \theta(x-4\cos \theta)=4\times 4\cos \theta(y-2\sin \theta)$

$\implies 2x\sin \theta-8\sin \theta \cos \theta=y\cos \theta-2\sin \theta \cos \theta$

$\implies 2x\sin \theta=y\cos \theta + 6\sin \theta \cos \theta$

$\implies \dfrac{2x}{\cos \theta}=\dfrac{y}{\sin \theta}+6$

$\implies 2x\sec \theta -y\text{cosec} \theta = 6$

It meet the x-axis at $Q(3\cos \theta, 0)$

$\therefore M=\left( \dfrac { 7 }{ 2 } \cos { \theta  } ,\sin { \theta  }  \right) =\left( x,y \right) $

Locus of $M$ is

$\dfrac { { x }^{ 2 } }{ { \left( \dfrac { 7 }{ 2 }  \right)  }^{ 2 } } +\dfrac { { y }^{ 2 } }{ 1 } =1$

Latus rectum of the given ellipse is
$x=\pm ae=\pm \sqrt{16-4}=\pm 2\sqrt{3}$
So locus of $M$ meets the latus rectum at points for which
$\displaystyle y^{2}=1-\frac{12\times 4}{49}=\frac{1}{49}$   $\Rightarrow $   $\displaystyle y=\pm \frac{1}{7}$
Hence, the required point is $\displaystyle \left ( \pm 2\sqrt{3}, \pm \frac{1}{7} \right )$.

The eccentric angle of the point where the line, $5x\, -\, 3y\, =\, 8\sqrt{2}$ is a normal to the ellipse $\displaystyle\frac{x^2}{25}\, +\, \frac{y^2}{9}\,=\,1$ is

  1. $\displaystyle\frac{3\pi}{4}$

  2. $\displaystyle\frac{\pi}{4}$

  3. $\displaystyle\frac{\pi}{6}$

  4. $tan^{-1}\,2$


Correct Option: B
Explanation:

The equation of the normal to the ellipse $\dfrac{x^2}{a^2} + \dfrac{y^2}{b^2} = 1$ at the point $P(a \cos \theta, b \sin \theta)$ is $ax\sec\theta - bycosec\theta= a^2 - b^2$

Given,ellipse equation as $\dfrac{x^2}{5^2} + \dfrac{y^2}{3^2} = 1$

$\Rightarrow$ Length of major axis, $a=5$ and length of minor axis, $b=3$.

$\therefore$The required equation of normal is $ 5x\sec\theta-3ycosec\theta=5^2-3^2$

$\Rightarrow 5x\sec\theta-3ycosec\theta=16 \dots (1)$

Given normal equation $5x-3y=8\sqrt2$

Multiplying both sides with $\sqrt2$

$\Rightarrow 5\sqrt2 x-3\sqrt2 y=16\dots (2)$

Comparing equation $(1)$ and $(2)$

$\Rightarrow \sec\theta=\sqrt2$

$\Rightarrow \cos\theta=\dfrac{1}{\sqrt2}$

$\Rightarrow \theta =\dfrac{\pi}{4}$

On the ellipse $\displaystyle \frac { { x }^{ 2 } }{ 4 } +\frac { { y }^{ 2 } }{ 9 } =1$, one of the points at which the normals are parallel to the line $2x-y=1$ is

  1. $\displaystyle \left( \frac { 9 }{ \sqrt { 10 }  } ,\frac { 2 }{ \sqrt { 10 }  }  \right) $

  2. $\displaystyle \left( -\frac { 9 }{ \sqrt { 10 }  } ,\frac { 2 }{ \sqrt { 10 }  }  \right) $

  3. $\displaystyle \left( \frac { 2 }{ \sqrt { 10 }  } ,\frac { 9 }{ \sqrt { 10 }  }  \right) $

  4. None of these


Correct Option: C
Explanation:

Given equation of ellipse is $\dfrac {x^2}{4}+\dfrac {y^2}{9}=1$

Let the feet of normal be $P(x,y)$

Normal is parallel to $2x-y=1$

Therefore, slope of normal at $P$ $=2$

and slope of slope of tangent at $P$ $=-\dfrac { 1 }{ 2 } $

Point of contact of tangent in slope from is $\left( \dfrac { \pm { a }^{ 2 }m }{ \sqrt { { a }^{ 2 }{ m }^{ 2 }+{ b }^{ 2 } }  } ,\dfrac { { \mp b }^{ 2 } }{ \sqrt { { a }^{ 2 }{ m }^{ 2 }+{ b }^{ 2 } }  }  \right) $

Here $a=2,b=3$ and $m=-\dfrac{1}{2}$

Therefore, the point of contact are:

$\left( \dfrac { \pm \left( 4\times \dfrac { -1 }{ 2 }  \right)  }{ \sqrt { 4\times \dfrac { 1 }{ 4 } +9 }  } ,\dfrac { \mp 9 }{ \sqrt { 4\times \dfrac { 1 }{ 4 } +9 }  }  \right) \\ \left( \dfrac { \mp 2 }{ \sqrt { 10 }  } ,\dfrac { \mp 9 }{ \sqrt { 10 }  }  \right) $

 So, option C is correct.

The equation of the normal to the ellipse $\displaystyle\frac{x^2}{a^2}\,+\,\frac{y^2}{b^2}\,=\,1$ at the positive end of latus rectum is : 

  1. $x\,+\,ey\,+\,e^2a\,=\,0$

  2. $x\,-\,ey\,-\,e^3a\,=\,0$

  3. $x\,-\,ey\,-\,e^2a\,=\,0$

  4. none of these


Correct Option: B
Explanation:

$Equation\quad of\quad ellipse:\quad \frac { { x }^{ 2 } }{ { a }^{ 2 } } +\frac { { y }^{ 2 } }{ { b }^{ 2 } } =1\ Co-ordinates\quad of\quad positive\quad latus\quad rectum\quad is:\quad (ae,\frac { { b }^{ 2 } }{ a } )\ Equation\quad of\quad normal\quad at\quad point(x1,y1)\quad is:\ \frac { { a }^{ 2 }x }{ x1 } -\frac { { b }^{ 2 }y }{ y1 } ={ (ae) }^{ 2 }\ \therefore \quad Equation\quad is:\quad \frac { { a }^{ 2 }x }{ ae } -\frac { { b }^{ 2 }y }{ \frac { { b }^{ 2 } }{ a }  } ={ (ae) }^{ 2 }\ Or,\quad \frac { x }{ e } -\frac { y }{ 1 } ={ ae }^{ 2 }\ Or,\quad x-ey-{ ae }^{ 3 }=0$


Option [B]

Area of the triangle formed by the ${x}$ axis, the tangent and normal at $(3,2)$ to the ellipse $\displaystyle \frac{x^{2}}{18}+\frac{y^{2}}{8}=1$ is 

  1. $5$

  2. $\dfrac{13}{3}$

  3. $\displaystyle \frac{15}{2}$

  4. $\displaystyle \frac{9}{2}$


Correct Option: B
Explanation:

Given equation of ellipse $\displaystyle \frac{x^{2}}{18}+\frac{y^{2}}{8}=1$
$\displaystyle \frac {dy}{dx}=\displaystyle \frac {-4x}{9y}$
Slope of tangent to ellipse at $(3,2)$ is 
$m=\displaystyle \frac{-2}{3}$

Equation of tangent to ellipse is 
$y-2=-\displaystyle \frac{2}{3}(x-3)$
$\Rightarrow 2x+3y=12$
Since , the tangent intersect x-axis i.e. $y=0$
$\Rightarrow x=6$
So, tangent intersects x-axis at $(6,0)$

Equation of normal to ellipse is 
$y-2=\displaystyle \frac{3}{2}(x-3)$
$\Rightarrow 3x-2y=5$
Since , the tangent intersect x-axis i.e. $y=0$
$\Rightarrow x=\displaystyle \frac{5}{3}$
So, normal intersects x-axis at $\left(\displaystyle \frac{5}{3} ,0\right)$

So, area of triangle $=\displaystyle \frac { 1 }{ 2 } \begin{vmatrix} 3 & 2 & 1 \ 6 & 0 & 1 \ \frac { 5 }{ 3 }  & 0 & 1 \end{vmatrix}$
$=\displaystyle \frac{13}{3}$ sq.units

Find the area of the rectangle formed by the perpendiculars from the center of the ellipse $\displaystyle \frac { { x }^{ 2 } }{ { a }^{ 2 } } +\frac { { y }^{ 2 } }{ { b }^{ 2 } } =1$ to the tangent and normal at a point whose eccentric angle is $\displaystyle\frac{\pi}{4}.$ 

  1. $\displaystyle \frac { \left( { a }^{ 2 }-{ b }^{ 2 } \right) ab }{ { a }^{ 2 }+{ b }^{ 2 } } $

  2. $\displaystyle \frac { \left( { a }^{ 2 }+{ b }^{ 2 } \right) ab }{ { a }^{ 2 }-{ b }^{ 2 } } $

  3. $\displaystyle \frac { \left( { a }^{ 2 }-{ b }^{ 2 } \right)  }{ab( { a }^{ 2 }+{ b }^{ 2 } )} $

  4. $\displaystyle \frac { \left( { a }^{ 2 }+{ b }^{ 2 } \right)  }{ab( { a }^{ 2 }-{ b }^{ 2 } )} $


Correct Option: A

Assertion (A): Equation of the normal to the ellipse $\displaystyle \frac{x^{2}}{25}+\frac{y^{2}}{9}=1$ at $P(\displaystyle \frac{\pi}{4})$ is $5x-3y-8\sqrt{2}=0$
Reason (R): Equation of the normal to the ellipse $\displaystyle \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ at $P(x _{1},y _{1})$ is $\displaystyle \frac{a^{2}x}{x _1}-\frac{b^{2}y}{y _1}=a^{2}-b^2$

  1. Both A and R are true but R is not the correct explanation of A

  2. Both A and R are true and R is the correct explanation of A

  3. A is true but R is false

  4. A is false but R is True


Correct Option: B
Explanation:

Reason is correct.
Equation of normal in parametric form: $\dfrac{ax}{\cos \theta}-\dfrac{by}{\sin \theta}=a^2-b^2$
$\Rightarrow 5\sqrt 2 x-3\sqrt 2 y=25-9=16$
Therefore, assertion is correct but reason is not the correct explanation 

The maximum distance of any normal to the ellipse $\displaystyle \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ from the centre is:

  1. $a+b$

  2. $a-b$

  3. $a^{2}+b^{2}$

  4. $a^{2}-b^{2}$


Correct Option: B
Explanation:
Equation of any normal to the ellipse is:
$ \cfrac { ax }{ \cos { \theta  } } -\cfrac { by }{ \sin { \theta  } } =ae$ 
Distance from the center is: $ d=\cfrac { ae }{ \sqrt { \cfrac { { a }^{ 2 } }{ { (\cos { \theta  }) }^{ 2 } } +\cfrac { { b }^{ 2 } }{ { (\sin { \theta  }) }^{ 2 } }  }  }$        -------(1) 
$a,e,b$ are fixed for a given ellipse. So, to maximize $d$ we need to minimize the denominator
$ \therefore E={ a }^{ 2 }({ \sec { \theta  }) }^{ 2 }+{ b }^{ 2 }{ \left( co\sec { \theta  } \right)  }^{ 2 }$
$ \cfrac { DE }{ D\theta  } =2{ a }^{ 2 }({ \sec { \theta  }) }^{ 3 }\tan \theta -{ 2b }^{ 2 }{ \left( co\sec { \theta  } \right)  }^{ 3 }\cot \theta =0$
$ \Rightarrow 2{ a }^{ 2 }({ \sec { \theta  }) }^{ 3 }\tan \theta ={ 2b }^{ 2 }{ \left( co\sec { \theta  } \right)  }^{ 3 }\cot \theta $ 
$\Rightarrow { (\tan \theta ) }^{ 4 }=\cfrac { { b }^{ 2 } }{ { a }^{ 2 } } $ 
$\Rightarrow \tan \theta =\sqrt { \cfrac { b }{ a } } $ 
$\therefore  \sin \theta =\sqrt { \cfrac { b }{ a+b }  }$ and 
$\cos \theta =\sqrt { \cfrac { a }{ a+b }  } $ 
Putting these values in equation 1 we get:
$ d=\cfrac { ae }{ \sqrt { \cfrac { { a }^{ 2 }(a+b) }{ a } +\cfrac { { b }^{ 2 }(a+b) }{ b }  }  } $ 
$\Rightarrow d=\cfrac { ae }{ { (a+b) } } $ 
$\Rightarrow d=\cfrac { ae(a-b) }{ { (a+b)(a-b) } } $ 
$\Rightarrow d=a-b$

The maximum distance of the normal to the ellipse $\displaystyle \frac{\mathrm{x}^{2}}{9}+\frac{\mathrm{y}^{2}}{4}=1$ from its centre is:

  1. $\displaystyle \frac{1}{2}$

  2. $2$

  3. $1$

  4. $4$


Correct Option: C
Explanation:
Ellipse : $\cfrac { { x }^{ 2 } }{ 9 } +\cfrac { { y }^{ 2 } }{ 4 } =1$

Equation of the normal,
$\cfrac { { ax }^{  } }{ \cos  { \theta  }  } -\cfrac { { by }^{  } }{ \sin { \theta  } } ={ a }^{ 2 }-{ b }^{ 2 } \\ \therefore \cfrac { { 3x }^{  } }{ \cos  { \theta  }  } -\cfrac { { 2y }^{  } }{ \sin { \theta  } } =5$

Or, $\ { 3x }^{  }\sin { \theta  }-{ 2y }^{  }\cos  { \theta  } =5\cos  { \theta  } \sin { \theta  }$

Distance from origin d= $\cfrac { \left| 0+0-5\cos  { \theta  } \sin { \theta  } \right|  }{ \sqrt { 9{ \left( \cos  { \theta  }  \right)  }^{ 2 }+{ 4\left( \sin { \theta  } \right)  }^{ 2 } }  } $

Or, d=$\cfrac { 5 }{ \sqrt { 9{ \left( \csc { \theta  }  \right)  }^{ 2 }+{ 4 }{ \left( \sec { \theta  }  \right)  }^{ 2 } }  } $

To maximize d we need to minimize the denominator.
$E=9{ \left( \csc { \theta  }  \right)  }^{ 2 }+{ 4 }{ \left( \sec { \theta  }  \right)  }^{ 2 }\ then,\quad \\\cfrac { dE }{ d\theta  } =-18{ \left( \csc { \theta  }  \right)  }^{ 2 }\cot { \theta  } +8{ \left( \sec { \theta  }  \right)  }^{ 2 }\tan { \theta  } \ For\quad \\Minimizing,\quad \cfrac { dE }{ d\theta  } =0\\ \therefore -18{ \left( \csc { \theta  }  \right)  }^{ 2 }\cot { \theta  } +8{ \left( \sec { \theta  }  \right)  }^{ 2 }\tan { \theta  } =0 \\Or,18{ \left( \csc { \theta  }  \right)  }^{ 2 }\cot { \theta  } =8{ \left( \sec { \theta  }  \right)  }^{ 2 }\tan { \theta  } \\ Or,{ \left( \tan { \theta  }  \right)  }^{ 4 }=\cfrac { 9 }{ 4 } \\ Or,\quad \tan { \theta  } =\sqrt { \cfrac { 3 }{ 2 }  } \\ \therefore \csc { \theta  } =\sqrt { \cfrac { 5 }{ 3 }  } \quad \quad and\quad \quad \sec { \theta  } =\sqrt { \cfrac { 5 }{ 2 }  } $

 On putting the values in d we get,
$d=\cfrac { 5 }{ \sqrt { 15+10 }  } \\ Or,\quad d=1$

lf the tangent drawn at a point $(t^{2},2t)$ on the parabola $y^{2}=4x$ is same as normal drawn at $(\sqrt{5}\cos\alpha, 2\sin\alpha)$ on the ellipse $\displaystyle \frac{x^{2}}{5}+\frac{y^{2}}{4}=1$, then which of following is not true?  

  1. $t=\displaystyle \pm\frac{1}{\sqrt{5}}$

  2. $\alpha=-\tan^{-1}2$

  3. $\alpha=\tan^{-1}2$

  4. $\alpha=\tan^{-1}4$


Correct Option: D

If the line $x\cos { \alpha  } +y\sin { \alpha  } =p$ be normal to the ellipse $\dfrac { { x }^{ 2 } }{ { a }^{ 2 } } +\dfrac { { y }^{ 2 } }{ { b }^{ 2 } } =1$, then

  1. ${ p }^{ 2 }\left( { a }^{ 2 }\cos ^{ 2 }{ \alpha } +{ b }^{ 2 }\sin ^{ 2 }{ \alpha } \right) ={ a }^{ 2 }-{ b }^{ 2 }$

  2. ${ p }^{ 2 }\left( { a }^{ 2 }\cos ^{ 2 }{ \alpha } +{ b }^{ 2 }\sin ^{ 2 }{ \alpha } \right) ={ \left( { a }^{ 2 }-{ b }^{ 2 } \right) }^{ 2 }$

  3. ${ p }^{ 2 }\left( { a }^{ 2 }\sec ^{ 2 }{ \alpha } +{ b }^{ 2 }\csc ^{ 2 }{ \alpha } \right) ={ a }^{ 2 }-{ b }^{ 2 }$

  4. ${ p }^{ 2 }\left( { a }^{ 2 }\sec ^{ 2 }{ \alpha } +{ b }^{ 2 }\csc ^{ 2 }{ \alpha } \right) ={ \left( { a }^{ 2 }-{ b }^{ 2 } \right) }^{ 2 }$


Correct Option: D
Explanation:

The equation of any normal to $\dfrac { { x }^{ 2 } }{ { a }^{ 2 } } +\dfrac { { y }^{ 2 } }{ { b }^{ 2 } } =1$ is 
       $ax\sec { \phi  } -by\csc { \phi  } ={ a }^{ 2 }-{ b }^{ 2 }$              ......(i)
The straight line $x\cos { \alpha  } +y\sin { \alpha  } =p$ will be a normal to the ellipse $\dfrac { { x }^{ 2 } }{ { a }^{ 2 } } +\dfrac { { y }^{ 2 } }{ { b }^{ 2 } } =1$, if equation (i) and $x\cos { \alpha  } +y\sin { \alpha  } =p$ represent the same line.
$\therefore \dfrac { a\sec { \phi  }  }{ \cos { \alpha  }  } =\dfrac { -b\csc { \phi  }  }{ \sin { \alpha  }  } =\dfrac { { a }^{ 2 }-{ b }^{ 2 } }{ p } $
$\Rightarrow \cos { \phi  } =\dfrac { ap }{ \left( { a }^{ 2 }-{ b }^{ 2 } \right) \cos { \alpha  }  } $
$\sin { \phi  } =\dfrac { -bp }{ \left( { a }^{ 2 }-{ b }^{ 2 } \right) \sin { \alpha  }  } $
$\because \sin ^{ 2 }{ \phi  } +\cos ^{ 2 }{ \phi  } =1$
$\Rightarrow \dfrac { { b }^{ 2 }{ p }^{ 2 } }{ { \left( { a }^{ 2 }-{ b }^{ 2 } \right)  }^{ 2 }\sin ^{ 2 }{ \alpha  }  } +\dfrac { { a }^{ 2 }{ p }^{ 2 } }{ { \left( { a }^{ 2 }-{ b }^{ 2 } \right)  }^{ 2 }\cos ^{ 2 }{ \alpha  }  } =1$
$\Rightarrow { p }^{ 2 }\left( { b }^{ 2 }\csc ^{ 2 }{ \alpha  } +{ a }^{ 2 }\sec ^{ 2 }{ \alpha  }  \right) ={ \left( { a }^{ 2 }-{ b }^{ 2 } \right)  }^{ 2 }$

If the line $x \cos a + y \sin a = p$ be normal to the ellipse $\dfrac{x^2}{a^2}$ $+\dfrac{y^2}{b^2}$ = 1 then

  1. $p^2(a^2\cos^2a+b^2\sin^2a)=a^2-b^2$

  2. $p^2(a^2\cos^2a+b^2\sin^2a)=(a^2-b^2)^2$

  3. $p^2(a^2\sec^2a+b^2\csc^2a)=(a^2-b^2)$

  4. $p^2(a^2\sec^2a+b^2\csc^2a)=(a^2-b^2)^2$


Correct Option: A
Explanation:

A line $y=mx+c$ is normal to ellipse $\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1$ if $c^2=m^2\dfrac{(a^2-b^2)^2}{a^2+m^2b^2}$
Given equation $x\cos a+y\sin a=p\Rightarrow y=-(\dfrac{\cos a}{\sin a})x+\dfrac{p}{\sin a}$
Here $m=-\cot a, c=\dfrac{p}{\sin a}$
Substituting in the formulae, we get
$\dfrac{p^2}{\sin ^2a}=\dfrac{\cos ^2a}{sin^2a}\times \dfrac{(a^2-b^2)^2}{a^2+(\cot^2a) b^2}$
After simplification, we get
$p^2\dfrac{(a^2\sin^2a+b^2\cos^2a)}{\sin^2a\cos^2a}=(a^2-b^2)^2$
$p^2(a^2\sec^2a+b^2\csc^2a)=(a^2-b^2)^2$

If the normal at the point $P(\theta)$ to the ellipse $\dfrac {x^{2}}{14} + \dfrac {y^{2}}{5} = 1$ intersects it again at the point $Q(2\theta)$, then $\cos \theta$ is equal to

  1. $2/3$

  2. $-2/3$

  3. $3/4$

  4. None of these


Correct Option: B
Explanation:
Normal at the point P(theta) to the ellipse $\dfrac{x²}{14} + \dfrac{y²}{5 }= 1$ intersects it again at the point $Q(2\  \theta). $

we know, standard equation of ellipse is 

$\dfrac{x²}{a²} + \dfrac{y²}{b²} = 1 $ compare it with given equation

so, $ a² = 14$ then, $a = √14 $

$b² = 5$ then, $b = √5 $

now equation of normal passing through point $P(\theta)$ is given by, 

$\dfrac{ax}{cos \theta} - \dfrac{by}{sin \theta} = a² - b². $

or, $\dfrac{\sqrt14x}{cos \theta} -\dfrac{ \sqrt5y}{sin \theta} = 14 - 5 = 9$ ....(1) 

it again meets the curve at the point $Q(2\theta) $

so, $Q(2\theta) = (√14cos2\theta, √5sin2\theta) $

now, put it in equation (1), 

or, $\dfrac{14cos2\theta}{\cos \theta} - \dfrac{5sin2\theta}{\sin\theta} = 9$ 

or, ${14(2cos² \theta - 1)}{\cos \theta} - \dfrac{10sin\theta cos \theta}{\sin \theta} = 9$

or, $28cos \theta - 14sec \theta - 10cos \theta = 9$

or, $18cos \theta - \dfrac{14}{cos \theta} = 9$

or, $18cos²\theta - 14 - 9cos \theta = 0$

or, $18cos²\theta -21cos \theta + 12cos\theta - 14 = 0$

or, $3cos \theta(6cos \theta - 7) + 2(cos \theta - 7) = 0$

or, $(3cos \theta + 2)(6cos \theta - 7) = 0$

or, $cos \theta = \dfrac{-2}{3} $


The number of tangents to the circle ${x}^{2}+{y}^{2}=3$ that are normals to the ellipse $\cfrac{{x}^{2}}{9}+\cfrac{{y}^{2}}{4}$ is

  1. one

  2. two

  3. three

  4. zero


Correct Option: A
Explanation:
Let $y=mx+c$ is tangent to $x^2+y^2=3$ 
Then by condition of tangency
$\left|\dfrac{c}{\sqrt{m^2+1}}\right|=\sqrt{3}$
$\Rightarrow c^2=3(m^2+1)$        ...(i)
$y=mx+c$ is Normal to $\dfrac{x^2}{9}+\dfrac{y^2}{4}=1$
in $c=\dfrac{(b^2-a^2)m}{\sqrt{a^2+b^2m^2}}$

$\Rightarrow c=\dfrac{(4-9)m}{\sqrt{9+4m^2}}$

$\Rightarrow c^2=\dfrac{25m^2}{4m^2+9}$

$\Rightarrow 3(m^2+1)(4m^2+9)=25m^2$
let $m^2=t$
$\Rightarrow 3(t+1)(4t+9)=25t$
$\Rightarrow$ since, $D<0$.
Hence, There is no rout:
Hence, there is no tangent to circle which is Normal to ellipse.

Which of the following is/are true?

  1. There are infinite positive integral values of $a$ for which $(13x-1)^2+(13y-2)^2=\left (\dfrac {5x+112y-1}{a}\right )^2$ represents an ellipse

  2. The minimum distance of a point $(1, 2)$ from the ellipse $4x^2+9y^2+8x-36y+4=0$ is $1$

  3. If from a point $P(0, \alpha)$ two normals other than axes are drawn to the ellipse $\dfrac {x^2}{25}+\dfrac {y^2}{16}=1$, then $|\alpha| < \dfrac {9}{4}$

  4. If the length of latus rectum of an ellipse is one-third of its major axis, then its eccentricity is equal to $\dfrac {1}{\sqrt 3}$


Correct Option: A,B,C

Number of distinct normal lines that can be drawn to the ellipse $\displaystyle \frac{x^2}{169} + \frac{y^2}{25} = 1$ from the point $P(0, 6)$ is:

  1. One

  2. Two

  3. Three

  4. Four


Correct Option: C

If the normal at any point $P$ on the ellipse $\displaystyle\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1$ meets the axes in $G$ and $g$ respectively, then $PG:Pg=$

  1. $a:b$

  2. $a^2:b^2$

  3. $b:a$

  4. $b^2:a^2$


Correct Option: D
Explanation:

Let $P\equiv (a\cos\theta, b\sin\theta)$
Thus equation of normal to the given ellipse at 'P' is given by,
$ax\sec\theta-by cosec\theta=a^2-b^2$
$\therefore G \equiv ((a-\cfrac{b^2}{a})\cos\theta,0), g\equiv (0,(b-\cfrac{a^2}{b})\sin\theta)$
Thus $PG = \sqrt{\cfrac{b^4}{a^2}\cos^2\theta+b^2\sin^2\theta}=\cfrac{b}{a}\sqrt{b^2\cos^2\theta+a^2\sin^2\theta}$
and $Pg = \sqrt{a^2\cos^2\theta+\cfrac{a^4}{b^2}\sin^2\theta}=\cfrac{a}{b}\sqrt{b^2\cos^2\theta+a^2\sin^2\theta}$
$\therefore PG:Pg = \cfrac{b^2}{a^2} $

The eccentricity of an ellipse whose centre is  at the origin is $\dfrac{1}{2}.$ If one of its directrices is $x =  - 4,$ then the equation of the normal to it at $\left( {1,\dfrac{3}{2}} \right)$ is

  1. $2y-x=2$

  2. $4x-2y=1$

  3. $4x+2y=7$

  4. $x+2y=4$


Correct Option: B
Explanation:
Given: Eccentricity of ellipse$=\dfrac{1}{2}$
Now, $\dfrac{a}{e}=-4$
$\Rightarrow a=4\times\dfrac{1}{2}=2$
$\therefore {b}^{2}={a}^{2}\left(1-{e}^{2}\right)$
$\Rightarrow {a}^{2}\left(1-\dfrac{1}{4}\right)=3$
$\Rightarrow \dfrac{3}{4}{a}^{2}=3$
$\therefore {a}^{2}=4$
$\dfrac{{x}^{2}}{4}+\dfrac{{y}^{2}}{3}=1$
Differentiating w.r.t $x$ we get
$\dfrac{2x}{4}+\dfrac{2y}{3}\dfrac{dy}{dx}=0$
$\Rightarrow \dfrac{dy}{dx}=\dfrac{\dfrac{-2x}{4}}{\dfrac{2y}{3}}$
$\Rightarrow \dfrac{dy}{dx}=\dfrac{-3x}{4y}$
$\Rightarrow \left[\dfrac{dy}{dx}\right] _{\left(1,\frac{3}{2}\right)}=\dfrac{-3}{4}\times\dfrac{2}{3}=\dfrac{-1}{2}$
Equation of normal at $\left(1,\dfrac{3}{2}\right)$ is 
$y-\dfrac{3}{2}=2\left(x-1\right)$
$\Rightarrow 2y-3=4x-4$
$\Rightarrow 4x-2y=1$ is the equation of the normal.

Tangents are drawn to the ellipse $ \displaystyle \frac{x^2}{a^2}+\displaystyle \frac{y^2}{b^2}=1 $ at points where it is intersected by the line $ \ell x+my+n=0 $. Find the point of intersection of tangents at these points.

  1. $ \displaystyle \frac{-a^2}{n},\displaystyle \frac{-b^2m}{n} $

  2. $ \displaystyle \frac{-a^2\ell}{n},\displaystyle \frac{-b^2m}{n} $

  3. $ \displaystyle \frac{-a^2\ell}{n},\displaystyle \frac{-b^2}{n} $

  4. None of these


Correct Option: B
Explanation:

Let $P\left( { x } _{ 1 },{ y } _{ 1 } \right) $ be the point of intersection of the
Line $lx+my+n=0$ and the ellipse $\cfrac { { x }^{ 2 }

}{ {a }^{ 2 } } +\cfrac { { y }^{ 2 } }{ { b }^{ 2 } } =1$
Then the equation of tangent at $P$ is
$\cfrac

{ { xx } _{ 1 } }{ { a }^{ 2 } } +\cfrac { { yy } _{ 1 } }{ { b }^{ 2 } }

=1\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot (i)$
Since $\left( { x } _{ 1 },{ y } _{ 1 } \right) $  is the point of intersection of the line
$lx+my+n=0\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot (ii)$
Clearly $(i)$ and $(ii)$ represent the same line. Therefore,
$\therefore \quad \cfrac { { x } _{ 1 } }{ { a }^{ 2 }l } =\cfrac { { y } _{ 1 } }{ { b }^{ 2 }m } =\cfrac { 1 }{ -n } $
${ x } _{ 1 }=\cfrac { { -a }^{ 2 }l }{ n } ,\quad { y } _{ 1 }=\cfrac { -{ b }^{ 2 }m }{ n } $
Therefore, the point of intersection of given line and  the given ellipse is
$\left(- \cfrac { { a }^{ 2 }l }{ n } ,\cfrac { { b }^{ 2 }m }{ n }  \right) \quad $
Hence, option 'B' is correct.

A ray emanating from the point $(4, 0)$ is incident on the ellipse $9x^2\, +\, 25y^2\, =\, 225$ at the point $P$ with abscissa $3$. Find the equation of the reflected ray after first reflection.

  1. $12x + 5y = 48$

  2. $12x - 5y = 48$

  3. $-12x - 35y = 48$

  4. $-12x + 35y = 48$


Correct Option: C,D
Explanation:

Solution:

Given equation of ellipse: $9x^2+25y^2=225$
$\cfrac{x^2}{25}+\cfrac{y^2}{9}=1$
Let $P(3,y _1)$
or, $9\times3^2+25y _1^2=225$
or, $25y _1^2=144$
or, $y _1=\pm\cfrac{12}{5}$
$\cfrac{x^2}{25}+\cfrac{y^2}{9}=1$
$\cfrac{x^2}{5^2}+\cfrac{y^2}{3^2}=1$
or, $e^2=1-\cfrac{b^2}{a^2}$

or, $e^2=1-\cfrac{9}{25}=\cfrac{16}{25}$
or, $e=\cfrac{4}{5}$
$ae=5\times\cfrac45=4$
It means the given point $(4,0)$ is focus of the ellipse.
We know that rays emanating from the one focus passes through other focus i.e $(-4,0)$
So, Equation of reflected ray $\Rightarrow y=\cfrac{\cfrac{12}{5}-0}{3+4}(x+4)$
or, $35y=12x+48$
or, $-12x+35y=48$
and another equation of reflected ray$\Rightarrow y=\cfrac{\cfrac{-12}{5}-0}{3+4}(x+4)$
or, $35y=-12x-48$
or, $-12x-35y=48$

The tangent and normal to the ellipse $x^2\, +\, 4y^2\, =\, 4$ at a point $P(\theta)$ on it meet the major axis in $Q$ and $R$ respectively. If $QR = 2$, the eccentric angle $\theta$ of $P$ is given by 

  1. $\cos \theta\, =\, \pm\, \dfrac23$

  2. $\sin \theta\, =\, \pm\, \dfrac23$

  3. $\tan \theta\, =\, \pm\, \dfrac23$

  4. $\cot \theta\, =\, \pm\, \dfrac23$


Correct Option: A
Explanation:

The equation of tangent to ellipse is $bx cos\theta+ay sin\theta=ab$

It meets major axis at $x=\dfrac{a}{cos\theta}$
The equation of normal to ellipse is $ax sec \theta -by cosec \theta=a^{2}-b^{2}$
It meets the major axis at $x=\dfrac{a^{2}-b^{2}}{a sec\theta}$
Here $a=2$ and $b=1$
So, point $Q$ is $\left(\dfrac{2}{cos\theta},0 \right)$ and point $R$ is $\left(\dfrac{3}{2 sec\theta},0\right)$
The distance between them $QR= \dfrac{3cos\theta}{2}-\dfrac{2}{cos\theta}=2$
$\Rightarrow 3\cos ^{ 2 }{ \theta  } -4cos \theta-4=0$
$\Rightarrow cos \theta=-\dfrac{2}{3}$

- Hide questions