0

Standard form of numbers - class-VIII

Description: standard form of numbers
Number of Questions: 36
Created by:
Tags: number world exponents numbers and place value maths place value, ordering and rounding powers and exponents
Attempted 0/35 Correct 0 Score 0

In standard from, the number 829030000 is written as $K\times { 10 }^{ 8 }$ where K is equal to 

  1. 82903

  2. 829.03

  3. 82.903

  4. 8.2903


Correct Option: A
Explanation:

$829030000=K \times 10^8$

Thus, $K=8.2903$
Hence, option D is correct.

The sum of the powers of the prime factors in $108 \times 192$  is

  1. $5$

  2. $7$

  3. $8$

  4. $12$


Correct Option: D
Explanation:

$\displaystyle 108=2\times 2\times  3\times 3\times 3=2^{2}\times 3^{3}$
$\displaystyle 192=2\times2\times2\times2\times2\times2\times3$
$\displaystyle =2^{6}\times 3^{1}$
$\displaystyle 108 \times 192=2^{2}\times 3^{3}\times 2^{6}\times 3^{1}$
$\displaystyle =2^{8}\times 3^{4}$
Sum of the powers = 8 + 4 = 12

The value of $\displaystyle (243)^{\frac{-2}{5}}$ is---

  1. $\displaystyle \frac{1}{9}$

  2. $\displaystyle \frac{2}{9}$

  3. 9

  4. None of these


Correct Option: A
Explanation:

$\displaystyle (243)^{-2/5} =\displaystyle(3^5)^{-2/5}$
                $\displaystyle = 3^{-2} = \frac{1}{9}$

Find the value of $\displaystyle (64)^{-2/3}$---

  1. 16

  2. $\displaystyle \frac{1}{16}$

  3. $\displaystyle -\frac{1}{16}$

  4. None of these


Correct Option: B
Explanation:

$\displaystyle (64)^{-2/3} = 4^3 \times 1^{-2/3} = 4^{-2}$
                 $\displaystyle = \frac{1}{4^2} = \frac{1}{16}$   

The value of $[(-3)^{(-2)}]^{(-3)}$ is---

  1. 243

  2. 27

  3. 729

  4. None of these


Correct Option: C
Explanation:

$[(-3)^{(-2)}]^{(-3)} = (-3)^6$
                           = 729

Charge of an electron is $0.00000000000000000016$ coulomb. This number can also be written in standard form as:

  1. $\displaystyle 1\cdot 6\times 10^{19}$

  2. $\displaystyle 1\cdot 6\times 10^{-20}$

  3. $\displaystyle 1\cdot 6\times 10^{-19}$

  4. $\displaystyle 1\cdot 6\times 10^{18}$


Correct Option: C
Explanation:

$0.0000000000000000000016=\displaystyle \frac{16}{100000000000000000000}$


=$\displaystyle \frac{1\cdot 6\times 10^{1}}{10^{20}}$

=$\displaystyle 1\cdot 6\times 10^{-19}$

The value of $(3^0 - 2^1) \times 4^2$ is---

  1. -16

  2. 32

  3. 64

  4. 0


Correct Option: A
Explanation:

$(3^0 - 2^1) \times 4^2 = (1-2) \times 16$
                                         $= -1 \times 16 = -16$

Simplify $\displaystyle (27)^{\frac{-2}{3}} \div \displaystyle (64)^{\frac{-2}{3}}$ is---

  1. $\displaystyle \frac{9}{16}$

  2. 16

  3. $\displaystyle \frac{16}{9}$

  4. 9


Correct Option: C
Explanation:

$\displaystyle \frac{(27)^{-2/3}}{ ( 64)^{-2/3}} = \frac{\displaystyle \frac{1}{9}}{ \displaystyle \frac{14}{16}} = \frac{16}{9}$

Size of a bacteria is $\displaystyle 1.5\times 10^{-7}m$. This number can also be written as:

  1. $0.00000015$

  2. $0.0000015$

  3. $0.000000015$

  4. $15000000$


Correct Option: A
Explanation:
$a\times 10^{-k} = \dfrac{a}{10^k}$

$\displaystyle 1.5 \times 10^{-7}= \dfrac{1.5}{10^7} = 0.00000015$

The usual form of $\displaystyle 6\cdot 8793\times 10^{4}$ is:

  1. $687930$

  2. $68793$

  3. $6879.3$

  4. $6879300$


Correct Option: B
Explanation:

$\displaystyle 6\cdot 8793\times 10^{4}=68,793$

Which of the following statement is false?

  1. $\displaystyle 4\cdot 59\times 10^{-3}=0.00459$

  2. $\displaystyle 7\times 10^{-5}=0.00007$

  3. $\displaystyle 1\cdot 03\times 10^{-3}=1030$

  4. $\displaystyle 8\cdot 8\times 10^{-4}=0.00088$


Correct Option: C
Explanation:

$\displaystyle 1\cdot 03\times 10^{-3}= 0\cdot 00103$
$\displaystyle \therefore $ The given statement is false

Which of the following expressions is true?

  1. $2940000=$$\displaystyle 2\cdot 94\times 10^{5}$

  2. $502000=$$\displaystyle 5\cdot 02\times 10^{5}$

  3. $3683000=$$\displaystyle 3\cdot 683\times 10^{5}$

  4. $40404000=$$\displaystyle 4\cdot 0404\times 10^{5}$


Correct Option: B
Explanation:

$\displaystyle 502000= 5\cdot 02\times 10^{5}$

Therefore, option B is correct.

When $70, 000$ is written as $7.0\times10^n$, what is the value of $n$?

  1. $1$

  2. $2$

  3. $3$

  4. $4$

  5. $5$


Correct Option: D
Explanation:

Given that $70,000$ is written as $7.0$ $\times $ ${10}^{n}$

From this, we can write
$70,000$ $=$ $7.0$ $\times$ ${10}^{n}$
$\Rightarrow {10}^{n}$ $=$ $\dfrac {70,000}{7}$
$\Rightarrow {10}^{n}$ $=$ $10,000$
$\Rightarrow {10}^{n}$ $=$ ${10}^{4}$
$\Rightarrow n$ $=$ $\log _{10}$ ${10}^{4}$
$\Rightarrow n$ $=$ $4$ $\log _{10}$ $10$
$\Rightarrow $ $=$ $4$
Therefore, the value of $n$ is $'4'$.

The standard form of $15240000$ is __________.

  1. $1.524\times 10^{7}$

  2. $1.524\times 10^{6}$

  3. $15.24\times 10^{7}$

  4. $1.524\times 10^{8}$


Correct Option: A
Explanation:

$15240000 = 1524\times 10000$

                   $= 1.524 \times 1000 \times 10000$
                   $= 1.524 \times 10^{7}$

Which of the following is equivalent to $ 7.7 \times 10^{-6}$?

  1. $0.00000077$

  2. $0.0000077$

  3. $0.000077$

  4. $0.00077$


Correct Option: B
Explanation:

$7.7 \times 10^{-6}=\dfrac{7.7}{1000000}=0.0000077$

The number $3.02 \times10^{-6}$ can be expressed in decimal form as:

  1. $0.0000302$

  2. $0.00000302$

  3. $0.000302$

  4. $0.00302$


Correct Option: B
Explanation:

$3.02 \times10^{-6}$ = $\dfrac{3.02}{1000000}$ $= 0.00000302$

The number $3\times10^{-8}$ can also be expressed as:

  1. $0.000003$

  2. $0.00003$

  3. $0.00000003$

  4. $0.0003$


Correct Option: C
Explanation:

$3\times10^{-8}$ $=$ $\dfrac{3}{100000000}$ $=$ ${0.00000003}$

The value of $\dfrac{(10^4+324)(22^4+324)(34^4+324)(46^4+324)(58^4+324)}{(4^4+324)(16^4+324)(28^4+324)(40^4+324)(52^4+324)}$ is?

  1. $324$

  2. $400$

  3. $373$

  4. $1024$


Correct Option: A

Find the unit digit of ${3^{46}} + 125 \times 436 + 256 \times {7^{345}}$

  1. $1$

  2. $3$

  3. $7$

  4. $9$


Correct Option: B

Find the last two digits of $3^{1997}$.

  1. $67$

  2. $63$

  3. $80$

  4. $56$


Correct Option: B
Explanation:

This is same as asking what is remainder when $3^{1997}\div 100$
$3^{4}\equiv 81  mod  100$
$3^{8}\equiv 61  mod  100$
$3^{12}\equiv 41  mod  100$
$3^{16}\equiv 21  mod  100$
$3^{20}\equiv 1  mod  100$


Now, $3^{40}, 3^{60}, 3^{80}, 3^{100}, ...., 3^{1980}$ all are $\equiv 1  mod  100$

We know $3^{16}\equiv 21  mod  100$

$3^{17}\equiv 21\times 3  mod  100$

$3^{17}\equiv 63  mod  100$

$\therefore 3^{1997}\equiv 3^{1980}\times 3^{17}$

since, $3^{1980}\equiv 1  mod  100$

and $3^{17}\equiv 63  mod  100$

$\therefore 3^{1997}\equiv 63  mod  100$

$\therefore $ Last two digit is 63

The value of ${\left( {{{27}^{\tfrac{{ - 2}}{3}}}} \right)^{\tfrac{1}{2}}} \times {\left( {{{64}^{\tfrac{1}{3}}}} \right)^2} \times {\left( {{{81}^{\tfrac{{ - 3}}{2}}}} \right)^{\tfrac{1}{6}}}$

  1. $\dfrac{1}{9}$

  2. $\dfrac{16}{9}$

  3. $\dfrac{2}{9}$

  4. $-\dfrac{16}{9}$


Correct Option: B
Explanation:
${\left( {{{27}^{\tfrac{{ - 2}}{3}}}} \right)^{\tfrac{1}{2}}} \times {\left( {{{64}^{\tfrac{1}{3}}}} \right)^2} \times {\left( {{{81}^{\tfrac{{ - 3}}{2}}}} \right)^{\tfrac{1}{6}}}$

$\displaystyle =\left(\dfrac{1}{(27)^{\tfrac{2}{3}}}\right)^{\tfrac{1}{2}}\times (4^{3\times \tfrac{1}{3}})^{2}\times \left(\dfrac{1}{(81)^{\frac{3}{2}}}\right)^{\tfrac{1}{6}}$

$\displaystyle =\left(\dfrac{1}{27}\right)^{\tfrac{2}{3}\times \tfrac{1}{2}}\times (4)^{2}\times \left(\dfrac{1}{81}\right)^{\tfrac{3}{2}\times \tfrac{1}{6}}$

$\displaystyle =\left(\dfrac{1}{3^{3}}\right)^{\tfrac{1}{3}}\times (4)^{2}\times \left(\dfrac{1}{3^{4}}\right)^{\tfrac{1}{4}}$

$\displaystyle =\frac{1}{3}\times 16\times \frac{1}{3}$

$=\dfrac{16}{9}$

The distance of the earth from the sun is 149,000,000 km. In scientific notation the distance is:

  1. $\displaystyle 149\times 10^{6}$ km

  2. $\displaystyle 14.9\times 10^{7}$ km

  3. $\displaystyle 1.49\times 10^{8}$ km

  4. $\displaystyle 0.149\times 10^{9}$ km


Correct Option: C
Explanation:

$\displaystyle 149,000,000 km=149\times1000000=1.49\times100000000=1.49\times 10^{8}km$

Solve:

$ \displaystyle 9^{\dfrac{3}{2}\div (243)^{-\dfrac{2}{3}}} $  simplifies to

  1. $ \displaystyle 3^{\dfrac{10}{3}} $

  2. ${{3}^{{{3}^{\dfrac{13}{3}}}}} $

  3. $ \displaystyle 3^{\dfrac{1}{3}} $

  4. $ \displaystyle 3^{19} $


Correct Option: B
Explanation:

Consider the given expression,


  $ \Rightarrow {{9}^{\dfrac{3}{2}\div {{\left( 243 \right)}^{-\,\dfrac{2}{3}}}}}={{9}^{\dfrac{3}{2}\times {{\left( 243 \right)}^{\dfrac{2}{3}}}}} $

 $ ={{9}^{\dfrac{3}{2}\times {{\left( {{3}^{5}} \right)}^{\dfrac{2}{3}}}}}={{9}^{\dfrac{3}{2}\times {{3}^{\dfrac{10}{3}}}}} $

 $ ={{\left( {{3}^{2}} \right)}^{\dfrac{3}{2}\times {{3}^{\dfrac{10}{3}}}}}={{\left( 3 \right)}^{3\times {{3}^{\dfrac{10}{3}}}}} $

 $ ={{3}^{{{3}^{1+\dfrac{10}{3}}}}}={{3}^{{{3}^{\dfrac{13}{3}}}}} $


Hence, this is the answer. 

The standard form of $0.000000000000487$ is ______

  1. $\displaystyle 4\cdot 87\times 10^{-13}$

  2. $\displaystyle 4\cdot 87\times 10^{-14}$

  3. $\displaystyle 4\cdot 87\times 10^{-15}$

  4. $\displaystyle 4\cdot 87\times 10^{-12}$


Correct Option: A
Explanation:

$0.000000000000487=\displaystyle \frac{487}{1000000000000000}$

=$ \dfrac{487}{10^{15}}$ =$\displaystyle \frac{4\cdot 87\times 10^{2}}{10^{15}}$

=$\displaystyle 4\cdot 87\times 10^{-13}$

The standard form of $8,60,00,00,00,00,000$ is

  1. $\displaystyle 8\cdot 6\times 10^{13}$

  2. $\displaystyle 8\cdot 6\times 10^{-13}$

  3. $\displaystyle 8\cdot 6\times 10^{12}$

  4. $\displaystyle 8\cdot 6\times 10^{14}$


Correct Option: A
Explanation:

$8,60,00,00,00,00,000=$$\displaystyle 8\cdot 6\times 10^{13}$

A number is said to be in the standard form when it is written as $\displaystyle k\times 10^{n}$ where $n$ is an integer and:

  1. $\displaystyle 1< k< 10$

  2. $\displaystyle 1< k\leqslant 10$

  3. $\displaystyle 1\leqslant k< 10$

  4. $\displaystyle 1\leqslant k\leqslant 10$


Correct Option: C
Explanation:

$k\times10^n$


If $n$ is an integer, then $k$ should lie between $1$ and $10$.

Lets consider the equalties, $k$ cannot be equal to $10$, if it is then we can update $k = 1$ and increment $n$ by $1$.

So, $1\leq k <10$

The usual form of $\displaystyle 5\times 10^{-8}$ is

  1. $0.000005$

  2. $0.00000005$

  3. $0.0000005$

  4. $0.000000005$


Correct Option: B
Explanation:

$\displaystyle 5\times 10^{-8}=0\cdot 00000005$

The usual form of $\displaystyle 4\cdot 56\times 10^{-5}$ is:

  1. $0.0000456$

  2. $0.00000456$

  3. $0.000456$

  4. $456000$


Correct Option: A
Explanation:

$\displaystyle 4\cdot 56\times 10^{-5}=0\cdot 00000456$

If $0.00044=$$\displaystyle 4\cdot 4\times 10^{n}$ then, find the value of $ n$.

  1. $4$

  2. $5$

  3. $-4$

  4. $-5$


Correct Option: C
Explanation:

$\displaystyle 0\cdot 00044= \frac{44}{100000}= \frac{4\cdot 4\times10^{1}}{10^{5}}$
$=\displaystyle 4\cdot 4\times 10^{-4}$
Now
$\displaystyle 4\cdot 4\times 10^{-4}=4\cdot 4\times 10^{n}$
$\displaystyle \therefore n=-4$

Find the value of $n$ such that $502000000=$$\displaystyle 5\cdot 02\times 10^{n}$.

  1. $5$

  2. $7$

  3. $-8$

  4. $8$


Correct Option: D
Explanation:

$\displaystyle 50,20,00,000=5\cdot 02\times 10^{8}$
Now $\displaystyle 5\cdot 02\times 10^{8}= 5\cdot 02\times 10^{n}$
$\displaystyle \therefore n= 8$

The standard form of $\displaystyle \frac{1}{10000000}$ is:

  1. $\displaystyle 1\times 10^{-7}$

  2. $\displaystyle 0\cdot 1\times 10^{-7}$

  3. $\displaystyle 1\times 10^{7}$

  4. $\displaystyle 1\times 10^{-6}$


Correct Option: A
Explanation:

$\displaystyle \frac{1}{10000000}= \frac{1}{10^{7}}= 1\times 10^{-7}$

The distance of the sun from the earth is $1,49,60,00,00,000$ m. Express it in standard form.

  1. $\displaystyle 1\cdot 496\times 10^{-10}$

  2. $\displaystyle 1\cdot 496\times 10^{-11}$

  3. $\displaystyle 1\cdot 496\times 10^{10}$

  4. $\displaystyle 1\cdot 496\times 10^{11}$


Correct Option: D
Explanation:

$1,49,60,00,00,000=$$\displaystyle 1\cdot 496\times 10^{11}$ m

The size of a plant cell is $0.00005473$ m. This number can also be written as

  1. $\displaystyle 5\cdot 473\times 10^{-3}$

  2. $\displaystyle 5\cdot 473\times 10^{-5}$

  3. $\displaystyle 5\cdot 473\times 10^{11}$

  4. $\displaystyle 5\cdot 473\times 10^{5}$


Correct Option: B
Explanation:

$\displaystyle 0\cdot 00005473=\frac{5473}{100000000}=\frac{5\cdot 473\times 10^{3}}{10^{8}}$
=$\displaystyle 5\cdot 473\times 10^{-5}$

The usual form of $\displaystyle 2\cdot 73\times 10^{12}$ is:

  1. $273000000000$

  2. $2.730000000000$

  3. $2730000000000$

  4. $27300000000000$


Correct Option: C
Explanation:

$2.73 \times 10^{12} $$=2730000000000$

The value of ${ \left( 256 \right)  }^{ 0.16 }.{ \left( 256 \right)  }^{ 0.09 }$ is:

  1. $4$

  2. $16$

  3. $64$

  4. $256.25$

  5. $-16$


Correct Option: A
Explanation:

we know,


$a^{m} \times a^{n}=a^{m+n}$

and $256=4^{4}$

$\Rightarrow (256)^{0.16} \times (256)^{0.09}$ $=(256)^{0.25}$

we know,
$(a^{m})^{n}=a^{mn}$

$\Rightarrow (4^{4})^{0.25}$$=4^{4 \times 0.25}$$=4^1=4$

- Hide questions