0

Geometrical constructions - class-IX

Description: geometrical constructions
Number of Questions: 86
Created by:
Tags: maths tangents and secants to a circle circle and tangent tangents and intersecting chords geometrical constructions symmetry circle
Attempted 0/86 Correct 0 Score 0

The range of values of $\lambda$ for which the circles $ { x }^{ 2 }+{ y }^{ 2 }=4$ and ${ x }^{ 2 }+{ y }^{ 2 }-2\lambda y+5=0$ have two common tangents only is-

  1. $\lambda \epsilon \left( -\sqrt { 5 } ,\sqrt { 5 } \right) $

  2. $\lambda <-\sqrt { 5 } or\quad \lambda >\sqrt { 5 }$

  3. $-\sqrt { 5 } <\lambda <1$

  4. none of these


Correct Option: A

The range of values of x for which the circles ${ x }^{ 2 }+{ y }^{ 2 }=4$ and$ { x }^{ 2 }+{ y }^{ 2 }+2xy+5=0\quad$ have two on tangents only is= 

  1. $\left( -\sqrt { 5 } ,\sqrt { 5 } \right)$

  2. $\lambda <=\sqrt { 5 } or\quad \lambda >\sqrt { 5 }$

  3. $-\sqrt { 5 } <\lambda <1$

  4. none of these


Correct Option: A

Intercept of a tangent between two parallel tangents to a circle subtends a right angle at the centre.

  1. True

  2. False


Correct Option: A

In the given figure, $AD\ and AE$ are the tangents to a circle with centre $O\ and BC$ touches the circle at $F$. If $AE=5\ cm$ then perimeter of $\triangle ABC$ is 

  1. $15\ cm$

  2. $10\ cm$

  3. $22.5\ cm$

  4. $20\ cm$


Correct Option: A

$\overline { M N }$ and $\overline { M Q }$ are two tangents from a point $M$ to a circle with centre $0$ If $m \angle N O Q = 120 ^ { \circ } ,$ then ?

  1. $N Q = M N = M Q$

  2. $N Q = O M$

  3. $O Q = O M$

  4. $O N = M N$


Correct Option: A

If $\triangle ABC$ is isoscles with $AB=AC$ and $C(O,r)$ is the incircle of the of the $\triangle BAC=30^{o}$. The tangent at $C$ intersects $AB$ at a point $D$, then $L$ trisects $BC$.

  1. True

  2. False


Correct Option: B

The chord of contact of the pair of tangents to the circle $x^2+y^2=1$ drawn from any point on the line $2x+y=4$ passes through a fixed point. 

  1. True

  2. False


Correct Option: A
Explanation:

If chords are drawn to the circle from a fixed point $(x _1,y _1)$ and then tangents are drawn at point of contact, the point of intersection of all tangents lie on a fixed point.


The fixed point is called pole and fixed line is called polar.


Equation of polar is $T=0$.

$C:x^2+y^2-1=0$

Equation of polar is $T=0$.

$xx _1+yy _1-1=0$

The line is identical to given line $2x+y-4=0$.

By comparing coefficients, we get,
$\dfrac{x _1}{2}=\dfrac{y _1}{1}=\dfrac{-1}{-4}$

$x _1=\dfrac{1}{2},y _1=\dfrac{1}{4}$

Hence, the fixed point is $(\dfrac{1}{2}, \dfrac{1}{4})$.

From a point $P$ which is at a distance of $13$ cm from the centre $O$ of a circle of radius $5$ cm, the pair of tangents $PQ$ and $PR$ to the circle are drawn. Then the area of the quadrilateral $PQOR$ is:

  1. $60$ cm$^{2}$

  2. $65$ cm$^{2}$

  3. $30$ cm$^{2}$

  4. $32.5$ cm$^{2}$


Correct Option: A
Explanation:

The radius perpendicular tangent at the pt. of contact, therefore, $OQ\perp PQ$ and $OR\perp PR$
In rt. $\triangle OPQ$, we have
$PQ=\sqrt{OP^{2}-OQ^{2}}$
   $=\sqrt{169-25}=\sqrt{144}=12$ cm
$\Rightarrow $ $PR=12$ cm (Two tangents from the same external pt. to a circle are equal)
Now area of quad. $PQOR=2\times $Area of $\triangle POQ$
   $\displaystyle =\left ( 2\times \frac{1}{2}\times 12\times 5 \right )$ cm$^{2}=60$ cm$^{2}$

Circles ${ C } _{ 1 },{ C } _{ 2 },{ C } _{ 3 }$ have their centres at $\left( 0,0 \right) ,\left( 12,0 \right) ,\left( 24,0 \right) $ and have radii $1,2$ and $4$ respectively. Line ${t} _{1}$ is a common internal tangent to ${C} _{1}$ and ${C} _{2}$ and has a positive slope and line ${t} _{2}$ is a common internal tangent to ${C} _{2}$ and ${C} _{3}$ and has a negative slope. Given that lines ${t} _{1}$ and ${t} _{2}$ intersect at $(x,y)$ and that $x=p-q\surd r$, where $p,q$ and $r$ are positive integers and $r$ is not divisible by the square of any prime, find $p+q+r$.

  1. $p+q+r=26$

  2. $p+q+r=24$

  3. $p+q+r=28$

  4. $p+q+r=27$


Correct Option: B

For the two circles ${ x }^{ 2 }+{ y }^{ 2 }=16$ and ${ x }^{ 2 }+{ y }^{ 2 }-2y=0$ there is/are

  1. One pair of common tangents

  2. Only one common tangent

  3. Three common tangents

  4. No common tangent


Correct Option: D
Explanation:

The centres and radii of given circles are ${ C } _{ 1 }\left( 0,0 \right) ,{ r } _{ 1 }=4$ and ${ C } _{ 2 }\left( 0,1 \right) ,{ r } _{ 2 }=\sqrt { 0+1 } =1$
Now, ${ C } _{ 1 }{ C } _{ 2 }=\sqrt { 0+{ \left( 0-1 \right)  }^{ 2 } } =1$
and ${ r } _{ 1 }-{ r } _{ 2 }=4-1=3$
$\therefore { C } _{ 1 }{ C } _{ 2 }<{ r } _{ 1 }-{ r } _{ 2 }$
Hence, second circle lies inside the first circle.

From a point outside a circle, one tangent and one secant are drawn. The length of exterior part of secant is $7$ cm and that of interior part is $9$ cm. Find the length of tangent segment.

  1. $10.6$ cm

  2. $10.9$ cm

  3. $11.2$ cm

  4. $11.6$ cm


Correct Option: A
Explanation:

Let length of tangent be $l$

Length of exterior part of secant $=m=7 $ cm
Length of interior part of secant $=n=9 $ cm
Now using the secant intersection theorem, we have
${ l }^{ 2 }=m(m+n)\ \Rightarrow { l }^{ 2 }=7(7+9)\ \Rightarrow { l }^{ 2 }=112 $
$\Rightarrow l=\sqrt { 112 } =10.6$ cm
Option A is correct.

Draw a circle of radius 4 cm. Construct a pair of tangents to it, the angle between which is $60^0$. Also justify the construction. Measure the distance between the centre of the circle and the point of intersection of tangents.

  1. 4 cm

  2. 6 cm

  3. 8 cm

  4. 10 cm


Correct Option: C
Explanation:

Join O and P.
Now, in triangles OPQ and OPR,
OP = OP (Common)
OQ = OR (radius of circle)
PQ = PR (tangents from single point)

Hence OPQ and OPR are congruent triangles.
$\angle OPQ = \angle OPR = 30^{\circ}$


Thus in triangle OPQ, $\dfrac{OQ}{OP} = Sin 30$

OP = $\dfrac{4}{Sin30}$

OP = 8 cm

From a point A which is at a distance of 10 cm from the center O of a circle of radius 6 cm, the pair of tangents AB and AC to the circle are drawn. Then the area of Quadrilateral ABOC is:

  1. $24 cm^{2}$

  2. $4 8cm^{2}$

  3. $96cm^{2}$

  4. $100cm^{2}$


Correct Option: B
Explanation:

Since $\triangle ABO$ is congruent to $\triangle ACO$,  area of $ABOC$ is twice the area of $\triangle ABO$.

In $\triangle ABO, \ OA = 10 cm, \ OB = 6 cm$.
Since tangent is perpendicular to radius at the point of contact, by Pythagoras' theorem, we have 
$AB = \sqrt{OA^2 - OB^2} = 8 cm$
So, the area of $\triangle ABO$ is $\dfrac{1}{2}\times AB\times OB = 24 cm^2$
So, the area of $ABOC$ is $2\times 24 = 48 cm^2$.
So option B is the right answer.

If the angle between two radii of a circle is $140^{\circ}$, then the angle between the tangents at the ends of the radii is :

  1. $90^{\circ}$

  2. $40^{\circ}$

  3. $70^{\circ}$

  4. $60^{\circ}$


Correct Option: B
Explanation:

Since tangents and radii are perpendicular at the point of contact, in the quadrilateral formed by the two radii and the tangents at their ends, we have two right angles at the two points of contacts.

Let the angle between the tangents be $x^o$. Then
$140 + 90 + 90 + x = 360 \Rightarrow x = 40^o$.
So option B is the right answer.

The lengths of tangents drawn from an external point to a circle are equal.

  1. True

  2. False

  3. Either

  4. Neither


Correct Option: A
Explanation:

Two tangents can be drawn from an external point and both their lengths are equal.

If two tangents inclined at an angle of $60^{\circ}$ are drawn to a circle of radius 3 cm, then the length of each tangent is equal to:

  1. $\dfrac{3\sqrt{3}}{2}$ cm

  2. $2\sqrt{3}$ cm

  3. $3\sqrt{3}$ cm

  4. 6 cm


Correct Option: C
Explanation:

Tangent is perpendicular to radius at the point of contact.

By symmetry with respect to the line joining the center and the point from which tangents are drawn, we have the length of tangent $=\dfrac{3}{\tan 30^o}=3\sqrt{3} cm$.
So option C is the right answer.

From point $P$ outside a circle, with a circumference of $10$ units, a tangent is drawn. Also from $P$ a secant is drawn dividing the circle into unequal arcs with lengths $m$ and $n$. It is found that $t$, the length of the tangent, is the mean proportional between $m$ and $n$. If $m$ and $t$ are integers, then $t$ may have the following number of values.

  1. Zero

  2. One

  3. Two

  4. Three


Correct Option: C
Explanation:

Circumference = 10 units

m+n=10
n=10-m
't' is the length of the tangent.
$t^{2}=mn$
$t=\sqrt{m(10-m)}$
At $m=1, t=3$
At $m=2, t=4$
$\therefore$ Two values are possible for t.

Tangents at the end points of  the diameter of a circle  intersect at angle Q Q is equal  to

  1. $90^{\circ}$

  2. $60^{\circ}$

  3. $0^{\circ}$

  4. $30^{\circ}$


Correct Option: C

A pair of tangents are drawn from a point $P$ to the circle $x^{2} + y^{2} = 1$. If the tangents make an intercept of $2$ on the line $x = 2$, the locus of $P$ is

  1. Straight line

  2. Pair of lines

  3. Circle

  4. Parabola


Correct Option: D
Explanation:

Let $P$ be $(h, k)$ then by $SS _{1} = T^{2}$ the equation of pair of tangents drawn from $P$ to $x^{2} + y^{2} = 1$ is
$(h^{2} + k^{2} - 1)(x^{2} + y^{2} - 1) = (hx + ky - 1)^{2}$
Its intersection with the line $x = 1$ is given by
$y^{2}(h^{2} + k^{2} - 1) = (ky + h - 1)^{2}$
or $y^{2}(h^{2} - 1) - 2yk (h - 1) - (h - 1)^{2} = 0 .....(1)$
It is a quadratic in $y$ and we are given that length of intercept is $1 \therefore y _{1} - y _{2} = 2$
or $(y _{1} + y _{2})^{2} - 4y _{1}y _{2} = 1$
or $\left [\dfrac {2k(h - 1)}{h^{2} - 1}\right ]^{2} + 4\dfrac {(h - 1)^{2}}{h^{2} - 1} = 4$
or $\dfrac {4k^{2}}{(h + 1)^{2}} + \dfrac {4(h - 1)}{h + 1} = 4$
or $k^{2} = (h + 1)^{2} - (h^{2} - 1) = 2h + 2$
Hence the locus of $(h, k)$ is $y^{2} =2(x + 1)$ which represents a parabola.

A family of linear functions is given by $f(x) = 1 + c(x + 3)$ where $c \in R$. If a member of this family meets a unit circle centred at origin in two coincidence points then 'c' can be equal to

  1. $-3/4$

  2. $-1$

  3. $3/4$

  4. $1$


Correct Option: A
Explanation:

Given function,

$f(x)=1+c\left( x+3 \right)$                     .....( 1 )               where $c\in R$

We know that,

General equation of circle of radius $a$ meets at the origin is

${{x}^{2}}+{{y}^{2}}={{a}^{2}}$               

But it is unit circle then $a=1$,

Then, equation of circle is

$ {{x}^{2}}+{{y}^{2}}={{1}^{2}} $

$ {{x}^{2}}+{{y}^{2}}=1 $

Let  $f\left( x \right)=y$

By equation $\left( 1 \right)$ and we get,

$y=1+c\left( x+3 \right)$

$y=1+cx+3$                          ......( 2 )

Using distance formula,   at the origin to a line

$ d=\left| \dfrac{0-c\times 0-1-3c}{\sqrt{{{1}^{2}}+{{c}^{2}}}} \right|=1 $

$ \left| \dfrac{-1-3c}{\sqrt{{{1}^{2}}+{{c}^{2}}}} \right|=1 $

Taking square both side and we get, 

$ {{\left( \dfrac{1+3c}{\sqrt{1+{{c}^{2}}}} \right)}^{2}}=1 $

$ {{\left( 1+3c \right)}^{2}}=1+{{c}^{2}} $

$ {{1}^{2}}+{{\left( 3c \right)}^{2}}+6c=1+{{c}^{2}} $

$ 1+9{{c}^{2}}+6c=1+{{c}^{2}} $

$ 9{{c}^{2}}+6c-{{c}^{2}}=0 $

$ 8{{c}^{2}}+6c=0 $

$ 2c\left( 4c+3 \right)=0 $

$ 2c=0,4c+3=0 $

$ c=0,4c=-3 $

$ c=0,c=-\dfrac{3}{4} $

 Hence, It is required solution.

A tangent from $P$, a point in the exterior of a circle touches circle at $Q$. If $OP=13$, $PQ=5$, then the diameter of the circle is ______________

  1. $576$

  2. $15$

  3. $8$

  4. $24$


Correct Option: D
Explanation:

Since tangent is perpendicular to the radius through the point of contact
so, $PQ \bot OQ$

therefore
${\left( {PQ} \right)^2} + {\left( {OQ} \right)^2} = {\left( {OP} \right)^2}$

$ = {\left( 5 \right)^2} + {r^2} = {\left( {13} \right)^2}$

$ = {r^2} = 169 - 25$

$\Rightarrow {r^2} = 144$

$\Rightarrow r = 12cm$

so, diameter of the circle $2 \times r$
$=2 \times 12$ $=24cm$

Tangents $TP$ and $TQ$ are drawn from a point $T$ to circle $x^{2}+y^{2}=a^{2}$. If the point $T$ lies on the line $px+qy=r$, then locus of the centre of circumcircle of $\triangle TPQ$ is

  1. straight line

  2. circle

  3. parabola

  4. ellipse


Correct Option: A

Tangents PA and PB are drawn to the cicle $S\, \equiv \,{x^2}\, + \,{y^2}\, - \,2y\, - \,3\, = \,0$ from the point $P(3, 4)$. Which of the following alternative(s) is/are correct ?

  1. The power of point $P(3, 4)$ with respect to circle $S=0$ is $14$.

  2. The angle between tangents from $P(3, 4)$ to the circle $S=0$ is $\frac{\pi }{3}$

  3. The equation of circumcircle of $\Delta PAB\,$ is ${x^2}\, + \,{y^2}\, - \,3x\, - \,5y\, + \,4\, = 0$

  4. The area of quadrilateral $PACB$ is $3\sqrt 7 $ square units where C is the centre of circle $S = 0$.


Correct Option: A

If $OA$ and $OB$ are the tangents to the circle ${x}^{2}+{y}^{2}-6x-8y+21=0$ drawn from the origin $O$, then $AB$ equals 

  1. ${ \dfrac { 17 }{ 3 } } $

  2. $\dfrac { 4 }{ 5 } \sqrt { 21 }$

  3. $11$

  4. None of these


Correct Option: B
Explanation:
equation of circle $\Rightarrow x^2+y^2-6x-8y+21=0$
radius $\Delta =\sqrt {9+16-21}=2$
$AB$ is chord of contact & its equation is
$x. x _1 +yy _1+9(x+x _1)+f(y+y _1)+c=0$
$(x _1, y _1)=(0,0)$
$0+0-3(x+0)-4(y+0)+21=0$
$3x+4y-21=0$
Perpendicular distance from $(3, 4)$ to line $l _1$
$CM=\dfrac {3(3)+4(4)-21}{\sqrt {9+16}}=\dfrac {4}{5}$
$AM=\sqrt {AC^2-CH^2}=\sqrt {4-\dfrac {16}{25}}=\dfrac {2}{5}\sqrt {21}$
$AB=2AM=\dfrac {4}{5}\sqrt {21} $ 
option $B$ is correct.


If 't$ _{1}$','t$ _{2}$','t$ _{3}$'are the lengths of the tangents drawnfrom centre of ex-circle to the circum circle of the $ \Delta A B C $, then- $ \frac { 1 } { t _ { 1 } ^ { 2 } } + \frac { 1 } { t _ { 2 } ^ { 2 } } + \frac { 1 } { t _ { 3 } ^ { 2 } } = $

  1. $ \frac { a b c } { a + b + c } $

  2. $ \frac { a b c } { a - b + c } $

  3. $ \frac { 2 a b c } { a + b + c } $

  4. None of these


Correct Option: A

Consider a circle $x^2+y^2=3$. Secants are drawn from (-2,0) to the circle which make an intercept of $2\sqrt{2}$ units on the circle. Identify the correct statements ?

  1. The combined equation of the secants is $x^2-4y^2+2x+1=0$

  2. The combined equation of the secants is $x^2-4y^2+x+1=0$

  3. Angle between the secants is $60^{o}$

  4. Angle between the secants is $30^{o}$


Correct Option: A

From a point P outside of a circle with center at O, tangent segments $PA$ and $PB$ are drawn. If $ \dfrac { 1 }{ \left( { OA }^{ 2 } \right)  } +\dfrac { 1 }{ \left( { PA }^{ 2 } \right)  } =\dfrac { 1 }{ 16 } $ then the length of the chord AB is ..

  1. $7$

  2. $8$

  3. $6$

  4. $5$


Correct Option: A

Parallelogram circumscribing a circle is a ?

  1. Rectangle

  2. Rhombus

  3. Square

  4. kite


Correct Option: B

$y=mx+b$ is a tangent to the circle ${x}^{2}+{y}^{2}-6x=16\ if\ \left (3\ m+b\right)^{2}=5\left (1+{m}^{2}\right)$.

  1. True

  2. False


Correct Option: B

Let  $ABCD$  be a quadrilateral in which $A B | C D , A B \perp A D \text { and } A B = 3 C D$. The area of quadrilateral  $ABCD$  is  $4.$  The radius of a Circle touching all the sides of quadrilateral is = ?

  1. $\sin \frac { \pi } { 12 }$

  2. $\sin \frac { \pi } { 6 }$

  3. $\sin \frac { \pi } { 4 }$

  4. $\sin \frac { \pi } { 3 }$


Correct Option: A

The tangents drawn from origin to the circle ${ x }^{ 2 }+{ y }^{ 2 }-2ax-2by+{ b }^{ 2 }=0$ are perpendicular to each other, if

  1. $a-b=1$

  2. $a+b=1$

  3. ${ a }^{ 2 }-{ b }^{ 2 }=0$

  4. ${ a }^{ 2 }+{ b }^{ 2 }=0$


Correct Option: C
Explanation:

Given circle equation ${x}^{2}+{y}^{2}-2ax-2by+{b}^{2}=0$
Center $: (a,b)$ and Radius $= \sqrt { {a}^{2}+{b}^{2}-{b}^{2} } $
Both tangents are drawn from origin and perpendicular to each other. So, two tangent are $x$ and $y$ axis.
Hence, $\sqrt { {a}^{2}+{b}^{2}-{b}^{2} } = a = b$
$\Rightarrow {a}^{2}={b}^{2}$
$\Rightarrow {a}^{2}-{b}^{2} = 0$ 

State whether the statement is true/false 

Two tangents $TP$ and $TQ$ are drawn to a circle with center $O$ from an external point $T$, then  $\angle PTQ=\angle OPQ$.

  1. True

  2. False


Correct Option: B

Opposite sides of a quadrilateral circumscribing a circle subtend supplementary angles at the center of the circle. 

  1. True

  2. False


Correct Option: A

If from a point P, two perpendicular tangents are drawn to the circle ${x^2} + {y^2} - 2x + 2y = 0$, then the coordinates of point P cannot be 

  1. $(3, - 1)$

  2. $(1,1)$

  3. $(\sqrt 3 + 1,0)$

  4. $(2,\sqrt 3 + 1)$


Correct Option: D

Let $C _1$ and $C _2$ be two non concentric circles with $C _2$ lying inside $C _1$. A circle C lying inside $C _1$ touches $C _1$ internally and $C _2$ externally. The locus of the centre of the circle C is :

  1. Ellipse

  2. Circle

  3. Parabola

  4. None of these


Correct Option: A

Let $C$ be the circle described $(x+a)^{2}+y^{2}=r^{2}$ where $0<r<a$ Let $m$ be the slope of the line through the origin that is tangent to $C$ at a point in the first quadrant. Then 

  1. $m=\dfrac{r}{\sqrt{a^{2}-r^{2}}}$

  2. $m=\dfrac{\sqrt{a^{2}-r^{2}}}{r}$

  3. $m=\dfrac{r}{a}$

  4. $m=\dfrac{a}{r}$


Correct Option: A

Lines are drawn from the point $P(-1,3)$ to the circle $x^{2}+y^{2}-2x+4y-8=0$, which meets the circle at two points A and B. The minimum value of $PA+PB$ is

  1. $4$

  2. $6$

  3. $8$

  4. $16$


Correct Option: C
Explanation:

$PA+PB \geq 2\sqrt {PA.PB}$   ...{A.M. $\geq $ G.M.}
$PA+PB \geq 2PT$   ...by tangent-secant theorem
$PA+PB \geq 2\sqrt{1+9-(-2)+12-8}=8$

A curve is such that the midpoint of the mid-point of the tangent intercepted between the point where the tangent is drawn and the point where the tangent is drawn and the point where the tangent meets y-axis, lies on the line $y=x$. If the curve passes through $(1,0)$, then the curve is

  1. $2y=x^2-x$

  2. $y=x^2-x$

  3. $y=x-x^2$

  4. $y=2(x-x^2)$


Correct Option: C
Explanation:
Let $P\left(x,y\right)$ be a point on the curve then equation of the tangent is $Y-y=\dfrac{dy}{dx}\left(X-x\right)$

Given that tangent is drawn and the point where the tangent is drawn and the point where the tangent meets $y$-axis
$\Rightarrow\,x-$coordinate$=0$

$\Rightarrow\,X=0$

$\Rightarrow\, Y-y=\dfrac{dy}{dx}\left(X-x\right)$ becomes

$\Rightarrow\, Y-y=\dfrac{dy}{dx}\left(0-x\right)$ 

$\Rightarrow\, Y=y-x\dfrac{dy}{dx}$

$\therefore\,A=\left(0,y-x\dfrac{dy}{dx}\right)$

Given that  midpoint of the mid-point of the tangent intercepted between the point where the tangent is drawn and the point where the tangent is drawn and the point where the tangent meets $y$-axis, lies on the line $y=x$

$\therefore\,$Midpoint of the line $AP$ lies on the line $y=x$

Midpoint of the line $AP=\left(\dfrac{x+0}{2},\,\dfrac{y+y-x\dfrac{dy}{dx}}{2}\right)$ lies on  the line $y=x$

$\therefore\,x-$coordinate$=y-$coordinate

$\Rightarrow\,\dfrac{x+0}{2}=\dfrac{2y-x\dfrac{dy}{dx}}{2}$

$\Rightarrow\,x=2y-x\dfrac{dy}{dx}$ is a linear differential equation.
$\dfrac{dy}{dx}-\dfrac{2}{x}y=-1$

Integrating factor is $={e}^{\int{p\,dx}}={e}^{\int{\dfrac{-2}{x}\,dx}}={e}^{-\ln{x}}=\dfrac{1}{{x}^{2}}$

Now, $\dfrac{1}{{x}^{2}}\times\dfrac{dy}{dx}-\dfrac{1}{{x}^{2}}\times \dfrac{2}{x}y=\dfrac{-1}{{x}^{2}}$

$\Rightarrow\,\dfrac{1}{{x}^{2}}\dfrac{dy}{dx}-\dfrac{2}{{x}^{3}}y=\dfrac{-1}{{x}^{2}}$ 

$\Rightarrow\,\dfrac{1}{{x}^{2}}dy-\dfrac{2}{{x}^{3}}ydx=\dfrac{-dx}{{x}^{2}}$ 

Integrating both sides,we get

$\Rightarrow\,d\left(\dfrac{y}{{x}^{2}}\right)=d\left(\dfrac{1}{x}\right)$

$\Rightarrow\,d\left(\dfrac{y}{{x}^{2}}\right)=d\left(\dfrac{1}{x}\right)$

$\Rightarrow\,\dfrac{y}{{x}^{2}}=\dfrac{1}{x}+c$ is the required curve.

The curve passes through $\left(1,0\right)$

$\Rightarrow\,0=1+c$

$\Rightarrow\,c=-1$

$\Rightarrow\,\dfrac{y}{{x}^{2}}=\dfrac{1}{x}-1$

$\Rightarrow\,\dfrac{y}{{x}^{2}}=\dfrac{1-x}{x}$

$\Rightarrow\,y=x-{x}^{2}$ is the required equation of the curve passing through $\left(1,0\right)$

The locus of the centre of a circle touching the lines $x+2y=0$ and $x-2y=0$ is

  1. $xy=0$

  2. $x=0$

  3. $y=0$

  4. none of these


Correct Option: A
Explanation:

let $(h,k)$ be the center
Then distance from center to both lines will be equal
$\left| \dfrac { h+2k }{ \sqrt { 5 }  }  \right| =\left| \dfrac { h-2k }{ \sqrt { 5 }  }  \right| $
$\Rightarrow hk=0$

Ans: A

Consider a circle, $x^{2}+y^{2}=1$ and point $P\left(1,\sqrt{3}\right).PAB$ is secant drawn from $P$ intersecting circle in $A$ and $B$ (distinct) then range of $\left|PA\right|+\left|PB\right|$is 

  1. $\left[2\sqrt{3},4\right]$

  2. $\left(2\sqrt{3},4\right]$

  3. $\left(0,4\right]$

  4. $\left(0,2\sqrt{3}\right)$


Correct Option: A

The number of tangents to the circle ${ x }^{ 2 }+{ y }^{ 2 }-8x-6y+9=0$ which passes through the point $(3,-2)$ is

  1. $2$

  2. $1$

  3. $0$

  4. None of these


Correct Option: A
Explanation:

Let $S\equiv { x }^{ 2 }+{ y }^{ 2 }-8x-6y+9=0$

Now $s$ for $(-3,2)=9+4-24+12+9>0$
$\therefore$ the point $(3,-2)$ lies outside the circle.
$\therefore$ $2$ tangents can be drawn to the circle from the point $(3,-2)$

Tangents drawn from the origin to the circle $ \displaystyle x^{2}+y^{2}-2px-2qy+q^{2}=0 $ are perpendicular to each other if

  1. $ \displaystyle p^{2}=q^{2} $

  2. $ \displaystyle p^{2}-q^{2}= 1 $

  3. $ \displaystyle p^{2}+q^{2}= 1 $

  4. None of these


Correct Option: A
Explanation:

The equation of pair of tangents drawn from the origin to the given circle are $S{ S } _{ 1 }={ T }^{ 2 }$
$\Rightarrow \left( { x }^{ 2 }+{ y }^{ 2 }-2px-2qy+{ g }^{ 2 } \right) \left( 0+0-0-0+{ g }^{ 2 } \right) ={ \left( x.0+y.0-p\left( x+0 \right) -q\left( y+0 \right) +{ y }^{ 2 } \right)  }^{ 2 }$
$\Rightarrow { q }^{ 2 }\left( { x }^{ 2 }+{ y }^{ 2 }-2px-2qy+{ g }^{ 2 } \right) -{ \left( -px-qy+{ g }^{ 2 } \right)  }^{ 2 }=0$
The two tangents are $\bot $ if ${ g }^{ 2 }+{ q }^{ 2 }-{ p }^{ 2 }-{ g }^{ 2 }=0$
(Sum of coefficient of ${ x }^{ 2 }+{ y }^{ 2 }=0$)
$\Rightarrow { q }^{ 2 }={ p }^{ 2 }$

If the distance from the origin of the centers of the three circles ${ x }^{ 2 }+{ y }^{ 2 }+2{ a } _{ i }x={ a }^{ 2 }\left( i=1,2,3 \right) $ are in G.P., then the length of the tangent drawn to them from any point on the circle ${ x }^{ 2 }+{ y }^{ 2 }={ a }^{ 2 }$ are in

  1. A.P.

  2. G.P.

  3. H.P.

  4. none of these


Correct Option: B
Explanation:

The centers of the three given circles are $\left( -{ \alpha  } _{ 1 },0 \right) ,\left( -{ \alpha  } _{ 2 },0 \right) $ and $\left( -{ \alpha  } _{ 3 },0 \right) $.

the distance of the three points from the origin are ${ \alpha  } _{ 1 },{ \alpha  } _{ 2 }$ and ${ \alpha  } _{ 3 }$.
Given: ${ \alpha  } _{ 1 },{ \alpha  } _{ 2 }$ and ${ \alpha  } _{ 3 }$ are in G.P.
$\Rightarrow { { \alpha  } _{ 2 } }^{ 2 }={ \alpha  } _{ 1 }{ \alpha  } _{ 2 }$
Now, coordinate of any point on the circle ${ x }^{ 2 }+{ y }^{ 2 }={ a }^{ 2 }$ are $\left( a\cos { \theta  } ,a\sin { \theta  }  \right) $.
$\therefore$ The lengths of the tangents drawn from the point $\left( a\cos { \theta  } ,a\sin { \theta  }  \right) $ to the three given circles are
$\sqrt { 2{ \alpha  } _{ 1 }a\cos { \theta  }  } ,\sqrt { 2{ \alpha  } _{ 2 }a\cos { \theta  }  } $ and $\sqrt { 2{ \alpha  } _{ 3 }a\cos { \theta  }  } $
using (1) are in G.P.

Two $ \displaystyle \perp $ tangents to the circle $ \displaystyle x^{2}+y^{2}=a^{2} $ meet at a point P. The locus of P has the equation

  1. $ \displaystyle x^{2}+y^{2}=3a^{2} $

  2. $ \displaystyle x^{2}+y^{2}=2a^{2} $

  3. $ \displaystyle x^{2}+y^{2}=4a^{2} $

  4. None of these


Correct Option: B
Explanation:

The coordinates of $P$ be $(h,k)$. Then the equation of the tangents drawn from $P(h,k)$ to ${ x }^{ 2 }+{ y }^{ 2 }={ a }^{ 2 }$ is
$\left( { x }^{ 2 }+{ y }^{ 2 }-{ a }^{ 2 } \right) \left( { h }^{ 2 }+{ k }^{ 2 }-{ a }^{ 2 } \right) ={ \left( hx+hy-{ a }^{ 2 } \right)  }^{ 2 }$   (using SS'$={ T }^{ 2 }$)
This equation represents a pair of perpendicular lines.
Therefore, coefficient of ${ x }^{ 2 }$$+$ coefficient of ${ y }^{ 2 }=0$
$\Rightarrow \left( { h }^{ 2 }+{ k }^{ 2 }-{ a }^{ 2 }-{ h }^{ 2 } \right) +\left( { h }^{ 2 }+{ k }^{ 2 }-{ a }^{ 2 }-{ k }^{ 2 } \right) =0$
$\Rightarrow { h }^{ 2 }+{ k }^{ 2 }={ 2a }^{ 2 }$
Hence, locus is ${ x }^{ 2 }+{ y }^{ 2 }=2{ a }^{ 2 }$

The circle ${ x }^{ 2 }+{ y }^{ 2 }=4$ cuts the line joining the points $A(1,0)$ and $B(3,4)$ in two points P and Q. Let $\dfrac { BP }{ PA } =\alpha$ and $\dfrac { BQ }{ QA } =\beta$. Then $\alpha$ and $\beta$ are roots of the quadratic equation

  1. $3{ x }^{ 2 }+2x-21=0$

  2. $3{ x }^{ 2 }+2x+21=0$

  3. $2{ x }^{ 2 }+3x-21=0$

  4. None of these


Correct Option: D
Explanation:
The equation of line joining $A(1,0)$ and $B(3,4)$ is $\dfrac{y-0}{x-1}=\dfrac{4-0}{3-1}\implies y=2x-2$    ... (1)

The point of intersection of this line and circle are

$x^2+(2x-2)^2=4\implies x^2+4x^2+4-8x=4\implies x=0,\dfrac{8}{5}$

Hence, points of intersection are $P(0,-2)$ and $Q\left(\dfrac{8}{5},\dfrac{6}{5}\right)$

Now, $BP=\sqrt{3^2+6^2}=\sqrt{45}$, $PA=\sqrt{1^2+2^2}=\sqrt{5}$, 

$BQ=\sqrt{\left(3-\dfrac{8}{5}\right)^2+\left(4-\dfrac{6}{5}\right)^2}=\sqrt{\dfrac{245}{25}}$ and $QA=\sqrt{\left(1-\dfrac{8}{5}\right)^2+\left(0-\dfrac{6}{5}\right)^2}=\sqrt{\dfrac{45}{25}}$

$\therefore \dfrac{BP}{PA}=3=\alpha$ and $\dfrac{BQ}{QA}=\dfrac{7}{3}=\beta$

The equation with roots $\alpha$ and $\beta$ is $(x-\alpha)(x-\beta)=0\implies (x-3)(3x-7)=0\implies 3x^2-16x+21=0$

This is the required answer.

If the length of the tangent drawn from any point on the circle $\displaystyle x^{2}+y^{2}+15x-17y+c^{2}=0$ to the circle $\displaystyle x^{2}+y^{2}+15x-17y+21=0 \ is \ \sqrt{5}$ units , then $c$ is equal to

  1. $-3$

  2. $3$

  3. $-4$

  4. $4$


Correct Option: C,D
Explanation:
Required length
$\sqrt { { x }^{ 2 }+{ y }^{ 2 }+15x-17y+21-\left( { x }^{ 2 }+{ y }^{ 2 }+15x-17y+{ c }^{ 2 } \right)  } =\sqrt { 5 } $
$\Rightarrow \sqrt { 21-{ c }^{ 2 } } =\sqrt { 5 } \Rightarrow { c }^{ 2 }=16\Rightarrow c=\pm 4$

The area of the quadrilateral formed by the tangent from the point $(4, 5)$ to the circle $\displaystyle x^{2}+y^{2}-4x-2y-c=0$ with a pair of radii joining the points of contacts of these tangents is $8$ sq. units. The value of $c$ is

  1. $12$

  2. $-1$

  3. $3$

  4. $11$


Correct Option: B,D
Explanation:

Given equation of circle is $x^2+y^2-4x-2y-c=0$


$(-g,-f)=(2,1)$

Radius $=\sqrt{g^2+f^2-c}$, $h$ of sub tangent 

Length of subtangent from point $(x _1,y _1) =\sqrt{x _1^2+y _1^2-4x _1-2y _1-c}$

 Area of quadrilateral = length of subtangent x radius

$\Rightarrow \sqrt { { 4 }^{ 2 }+{ 5 }^{ 2 }-4\times 4-2\times 5-c } \times \sqrt { 4+1+c } $

$ \Rightarrow { 8 }^{ 2 }=\left( 15-c \right) \left( 5+c \right) $

$\Rightarrow { c }^{ 2 }-10c-11=0$

$\Rightarrow c=11,-1$

A line is drawn through the point $P(3, 11)$ to cut the circle $x^{2}+y^{2}= 9$ at $A$ and $B$. Then $PA\cdot PB$ is equal to

  1. $9$

  2. $121$

  3. $ 205$

  4. $139$


Correct Option: B
Explanation:

From geometry we know $PA\cdot  PB = (PT)^{2}$

where $PT$ is the length of the tangent from $P$ to the circle.

Hence $PA\cdot PB=

(3)^2 + (11)^{2} - 9 = 11^{2} = 121$

If $t _{i}$ is the length of the tangent to the circle $ x^{2}+ y^{2} + 2g _{i} x + 5 =0; i =1,2,3$ from any point and $g _{1}, g _{2}$ and $g _{3} $ are in A.P. and $A _{i} = (g _{i},- t _{i}^{2})$, then

  1. $A _{1}, A _{2}, A _{3} $are collinear

  2. $A _{2}$ is the mid-point of $A _{1}$ and $A _{3} $

  3. $ A _{1} A _{2} $ is perpendicular. to $A _{2} A _{3}$

  4. $A _{2}$ divides $A _{1} A _{3}$ in the ratio $2: 5$


Correct Option: A,B
Explanation:

$t _{i}^{2} = x^{2} + y^{2} + 2g _{i}x + 5$  where $(x, y) $ is any point. 


Since  $g _{1}, g _{2}, g _{3}$ are in $A.P.$

$\Rightarrow 2g _{2} = g _{1} + g _{3}$
$\Rightarrow  2t _{2}^{2}  = t _{1}^{2} + t _{3}^{2} \Rightarrow  t _{1}^{2},t _{2}^{2} ,t _{3}^{2} $ are in $A.P.$
and $A _{2}$  is the mid-point of $A _{1}$ and $A _{3}$.

$\Rightarrow  A _{1}, A _{2}, A _{3}$  are collinear.

If the area of the quadrilateral formed by the tangent from the origin to the circle $x^{2} +y^{2} +6x -10y

+ c = 0$ and the pair of radii at the points of contact of these tangents to tbe circle is $8$ square units. then $c$ is a root of the equation

  1. $ c^{2} -32c + 64 = 0$.

  2. $ c^{2} -34c + 64= 0$.

  3. $c^{2}+ 2c -64 = 0 $.

  4. $ c^{2} + 34c -64 = 0$.


Correct Option: B
Explanation:

Let $OA, OB$ be the tangents from the origin to the given circle with centre $C(-3, 5)$
and radius .$\sqrt{9 + 25 -c}= \sqrt{ 34 -c} $
Then area of the quadribiteral $ OACB = 2 \times $ area of  $\triangle OAC = 2 \times (\dfrac 12) \times OA\times AC $
Now $OA =$ length of the tangent from the origin to the given circle $ = .\sqrt{C}$
and $AC =$ radius of the circle $=\sqrt{ 34 -c} $ so that. $\sqrt{C} \sqrt{34 -c} =8 $       ...(given)
$\Rightarrow  c (34 -c) =64 \Rightarrow c^{2} -34c+64=0$

The tangents drawn from the origin to the circle $x^{2} + y^{2} - 2px - 2qy + q^{2} = 0$ are perpendicular if

  1. $p = q$

  2. $p^{2} = q^{2}$

  3. $q = -p$

  4. $p^{2} + q^{2} = 1$.


Correct Option: A,B,C
Explanation:

Equation of the given circle can be written as $(x -p)^{2} + (y -q)^{2} = p^{2}$
so, that the centre of the circle is $(p, q)$ and its radius is $p$.
This shows that $x = 0$ is a tangent to the circle from the origin.
Since tangents from the origin are perpendicular, the equation of the other tangent must be $y = 0$,
which is possible if $q = \pm  p $  or $p^{2} =q^{2}$

The angle between the two tangents from the origin to the circle ${(x-7)}^{2}+{(y+1)}^{2}=25$ equals-

  1. $\cfrac{\pi}{2}$

  2. $\cfrac{\pi}{3}$

  3. $\cfrac{\pi}{4}$

  4. None of these.


Correct Option: A
Explanation:

Center is $(7,-1)$ and radius $=5$
Let equation of tangent from the origin be $y=mx$ $\Rightarrow mx-y=0$
Then, $\displaystyle\left| \frac { 7m+1 }{ \sqrt { { m }^{ 2 }+1 }  }  \right| =5$
$\Rightarrow { \left( 7m+1 \right)  }^{ 2 }=25\left( { m }^{ 2 }+1 \right) \Rightarrow 24{ m }^{ 2 }+14m-24=0$
Let ${ m } _{ 1 }$ and ${ m } _{ 2 }$ be the slopes of the two tangents.
Since $\displaystyle{ m } _{ 1 }{ m } _{ 2 }=-\frac{24}{24}=-1$
The two tangents are at right angles.

The tangents drawn from the origin to the circle ${ x }^{ 2 }+{ y }^{ 2 }-2rx-2hy+{h}^{2}=0$ are perpendicular if-

  1. $h=r$

  2. $h=-r$

  3. ${r}^{2}+{h}^{2}=1$

  4. ${r}^{2}+{h}^{2}=2$


Correct Option: A,B
Explanation:

Equation of the given circle can be written as ${ \left( x-r \right)  }^{ 2 }+{ \left( y-h \right)  }^{ 2 }={ p }^{ 2 }$
This has $(r,h)$ as the center and $r$ as the radius showing that it touches $y-$axis.
$\Rightarrow$ Other tangent from the origin to the circle must be $x-$axis which is possible if $h=\pm r$

If the tangents $PA$ and $PB$ are drawn from the point $P(-1,2)$ to the circle ${ x }^{ 2 }+{ y }^{ 2 }+x-2y-3=0$ and $C$ is the center of the circle, then the area of the quadrilateral $PACB$ is 

  1. $4$

  2. $16$

  3. Does not exists 

  4. $8$


Correct Option: C
Explanation:

The given circle is $S:{ x }^{ 2 }+{ y }^{ 2 }+x-2y-3=0$

Since at point $P\left( -1,2 \right) $ ${ S } _{ \left( -1,2 \right)  }=1+4-1-4-3=-3<0$
the point $P(-1,2)$ lies inside the circle.
Consequently, the tangents from the point $P(-1,2)$ to the circle does not exits.
Thus, the quadrilateral $PACB$ cannot be formed.

In a right-angled triangle ABC, $\angle B=90^{o}, BC = 12 cm $ and $AB = 5 cm$.The radius of the circle inscribed in the triangle (in cm) is

  1. $4$

  2. $3$

  3. $2$

  4. $1$


Correct Option: C
Explanation:

We know in $\triangle ABC, AB=5cm, BC=12cm$.
So, by pythagoras theorem we can find the length of side $AC$
$AC^2= AB^2 +BC^2=5^2+ 12^2$
$\therefore AC=13cm$
Circle is inscribed in a triangle. This type of circle is called as Incircle.
So, radius of incircle $=\displaystyle \frac {2 \triangle }{a+b+c}$
where $\triangle$ is the area of $\triangle ABC$ and $a,b,c$ are the sides of the triangle.
Area of $\triangle ABC= \displaystyle \frac {1}{2} AB \times BC= \frac {1}{2} \times 5 \times 12= 30sq.cm$
$\therefore$ radius of incircle $= \displaystyle \frac {2 \times 30}{5+12+13}=\frac {60}{30}=2cm$

In the given figure, if $PA$ and $PB$ are tangents to the circle with centre $O$ such that $\angle APB=54^{\circ},$ then $\angle OAB$ equals

  1. $16^{\circ}$

  2. $18^{\circ}$

  3. $27^{\circ}$

  4. $36^{\circ}$


Correct Option: C
Explanation:

Given, $PA$ and $PB$ are the tangents from the point P.
$\angle APB = 54^{\circ}$
Now, In quadrilateral AOBP
$\angle OAP = \angle OBP = 90^{\circ}$ (Angle between tangent and radius)
Sum of angles = 360
$\angle OAP + \angle OBP + \angle OAB + \angle APB = 360$
$90 + 90 + 54 + \angle AOB = 360$
$\angle AOB = 126$

Now, In $\triangle OAB$
$OA = OB$ (Radius of circle)
$\angle OAB = \angle OBA$ (Isosceles triangle property)
Sum of angles = 180
$\angle OAB + \angle OBA + \angle AOB = 180$
$2 \angle OAB + 126 = 180$
$\angle OAB = 27^{\circ}$

ABC is a right angled triangle right angled at B such that $BC = 6$ cm and $AB = 8$ cm. A circle with center O is inscribed in $\displaystyle \Delta ABC$. The radius of the circle is

  1. 1 cm

  2. 2 cm

  3. 3 cm

  4. 4 cm


Correct Option: B
Explanation:

Given, $BC = 6$ and $AB = 8$
using Pythagoras Theorem,
$AC^2 = AB^2 + BC^2$
$AC^2 = 6^2 + 8^2$
$AC = 10$
Radius = $\cfrac{2\times Area}{Perimeter}$
Radius = $\cfrac{2 \times (\dfrac{1}{2} \times 6 \times 8)}{10+8+6}$
Radius = $2$ cm

The angle between the two tangents from the origin to the circle $\displaystyle \left ( x-7 \right )^{2}+\left ( y+1 \right )^{2}=25 $ equals

  1. $\displaystyle \frac{\pi }{4}$

  2. $\displaystyle \frac{\pi }{3}$

  3. $\displaystyle \frac{\pi }{2}$

  4. none


Correct Option: C
Explanation:

Let $y + 1 = m (x - 7) + \sqrt{25}(\sqrt{m^2 + 1})$ be any line to the circle.

Since we need tangents form $(0,0)$

$(0+1) = m(0 – 7) + 5\sqrt{m^2 + 1}$

$(7m + 1)^2 = 25(m^2 + 1)$

$\implies 24m^2 + 14m – 24 =0$

If $m _1, m _2$ are roots of the equation

$m _1m _2 = \dfrac{c}{a} = \dfrac{-24}{24} = -1$

Lines with $m _1$ and $m _2$ are slope are perpendicular.

Tangents from origin are at right angles to each other.

If two tangents inclined at an angle $\displaystyle 60^{\circ}$ are drawn to a circle of radius 3 cm then length of each tangent is equal to

  1. $\displaystyle \frac{3}{2}\sqrt{3}cm$

  2. $6 cm$

  3. $3 cm$

  4. $\displaystyle 3\sqrt{3}cm$


Correct Option: D
Explanation:

Let PA and PB are the tangents on the circle. $\angle APB = 60$. the radius of the circle with center at O be 3 cm.
The two tangents drawn to a circle from an external point are equally inclined to the segment joining the center to the point.
Thus, $\angle APO = 30^{\circ}$
In $\triangle OAP$
$\angle OAP = 90^{\circ}$       ...(Angle between tangent and radius)
$\tan 30 = \cfrac{1}{\sqrt{3}} = \dfrac{OA}{AP}$
$PA = 3 \sqrt{3}$

Consider a curve $a{ x }^{ 2 }+2hxy+b{ y }^{ 2 }=1$ and a point $P$ not on the curve. A line drawn from the point $P$ intersect the curve ar point $Q$ and $R$. If the product $PQ.PR$ is independent of the slope of the line, then the curve is

  1. An ellipse

  2. A hyperbola

  3. A circle

  4. None of these


Correct Option: C
Explanation:

Let the coordinates of point$P$ be $\left( { x } _{ 1 },{ y } _{ 1 } \right). $

Equation of any line through $P$ can be written as $\displaystyle \frac { x-{ x } _{ 1 } }{ \cos { \theta  }  } =\frac { y-{ y } _{ 1 } }{ \sin { \theta  }  } =r$    ...(1)
$\Rightarrow x={ x } _{ 1 }+r\cos { \theta  } ,y={ y } _{ 1 }+r\sin { \theta  } .$

Coordinates of any point an (1) is of the form $\left( { x } _{ 1 }+r\cos { \theta  } ,{ y } _{ 1 }+r\sin { \theta  }  \right) .$ 
This point will lie on ${ ax }^{ 2 }+2hxy+{ by }^{ 2 }=1$ if
$a\left( { x } _{ 1 }+r\cos { \theta  }  \right) ^{ 2 }+2h\left( { x } _{ 1 }+r\cos { \theta  }  \right) \left( { y } _{ 1 }+r\sin { \theta  }  \right) +b{ \left( { y } _{ 1 }+r\sin { \theta  }  \right)  }^{ 2 }-1=0$
$\Rightarrow { r }^{ 2 }\left( a\cos ^{ 2 }{ \theta  } +2h\cos { \theta  } \sin { \theta  } +b\sin ^{ 2 }{ \theta  }  \right) +2\left[ { x } _{ 1 }\left( a\cos { \theta  } +h\sin { \theta  }  \right) +{ y } _{ 1 }\left( h\cos { \theta  } +b\sin { \theta  }  \right)  \right]$
$ +{ ax } _{ 1 }^{ 2 }+2{ hx } _{ 1 }{ y } _{ 1 }+{ by } _{ 1 }^{ 2 }-1=0$     ...(2)
Let $PQ={ r } _{ 1 }$  and $PR={ r } _{ 2 }.$ 
Then ${ r } _{ 1 },{ r } _{ 2 }$ are the roots of (2).
$\displaystyle \therefore PQ:PR={ r } _{ 1 }{ r } _{ 2 }=\frac { { ax } _{ 1 }^{ 2 }+2{ hx } _{ 1 }{ y } _{ 1 }+{ by } _{ 1 }^{ 2 }-1 }{ a\cos ^{ 2 }{ \theta  } +2h\cos { \theta  } \sin { \theta  } +b\sin ^{ 2 }{ \theta  }  } .$
We know rewrite the denominator.
We have$D=a\cos ^{ 2 }{ \theta  } +2h\cos { \theta  } \sin { \theta  } +b\sin ^{ 2 }{ \theta  } .\\ $
$\displaystyle =\frac { 1 }{ 2 } \left[ \left( a+b \right) +\left( a-b \right) \cos { 2\theta  }  \right] +h\sin { 2\theta  } $
$\displaystyle =\frac { a+b }{ 2 } +\frac { 1 }{ 2 } \left( a-b \right) \cos { 2\theta  } +h\sin { 2\theta  } $
Put $\displaystyle \frac { 1 }{ 2 } \left( a-b \right) =k\sin { \alpha  } ,h=k\cos { \alpha  } .$
$\displaystyle \Rightarrow k=\sqrt { { \left( \frac { a+b }{ 2 }  \right)  }^{ 2 }+{ h }^{ 2 } } $ and $\displaystyle \tan { \alpha  } =\frac { a-b }{ 2h } $
$\displaystyle \therefore D=\frac { 1 }{ 2 } \left( a+b \right) +\sqrt { { \left( \frac { a-b }{ 2 }  \right)  }^{ 2 }+{ h }^{ 2 } } \sin { \left( 2\theta +\alpha  \right)  } $
Thus, $\displaystyle PQ.PR=\frac { { ax } _{ 1 }^{ 2 }+2{ hx } _{ 1 }{ y } _{ 1 }+{ by } _{ 1 }^{ 2 }-1 }{ \frac { 1 }{ 2 } \left( a+b \right) +\sqrt { { \left( \frac { a-b }{ 2 }  \right)  }^{ 2 }+{ h }^{ 2 } } \sin { \left( 2\theta +\alpha  \right)  }  } $
For  this to be independent of $\theta$ we must have $\displaystyle { \left( \frac { a-b }{ 2 }  \right)  }^{ 2 }+{ h }^{ 2 }=0\Rightarrow a=b$ and $n=0.$
But this to be condition for the given curve to represent a circle.  

If $5x-12y+10=0$ and $12y-5x+16=0$ are two tangents
to a circle then radius of the circle is

  1. $1$

  2. $2$

  3. $4$

  4. $6$


Correct Option: A
Explanation:

$5x-12y+10=0$ and $12y-5x+16=0$ are two parallel tangent to a circle.
Then distance $bet^{n}$ this two parallel tangents is $2r$.
$\therefore d=\left | \dfrac{-10-16}{\sqrt{5^{2}+12^{2}}} \right |=\left | \dfrac{26}{13} \right |=2$
$\therefore \ d=2r=2$
$\Rightarrow r=radius=1$

The equation to the locus of the point of intersection of any two perpendicular tangents to $x^{2}+ y^{2} = 4$ is

  1. $\mathrm{x}^{2}+\mathrm{y}^{2}=8$

  2. $\mathrm{x}^{2}+\mathrm{y}^{2}=12$

  3. $\mathrm{x}^{2}+\mathrm{y}^{2}=16$

  4. $\mathrm{x}^{2}+\mathrm{y}^{2}=4\sqrt{3}$


Correct Option: A
Explanation:

The equation of the tangent to the circle $x^2+y^2=4$ is

$y=mx+2\sqrt{1+m^2}$
$P(h,k)$ lies on the tangent, then
$k-mh=2\sqrt{1+m^2}$
or, $(k-mh)^2=4(1+m^2)$
or, $m^2(h^2-4)-2mhk+k^2-4=0$
This is the quadratic equation in $m.$ Let $m _1$ and $m _2$ be roots
$m _1m _2=\cfrac{k^2-4}{h^2-4}=-1$
or, $k^2-4=-h^2+4$
or, $h^2+k^2=8$
Therefore, Equation to the locus of the intersection of any two perpendicular tangents is
$x^2+y^2=8$
Hence, A is the correct option.

If ${ \theta } _{ 1 },{ \theta } _{ 2 }$ be the inclinations of tangents drawn from the point $P$ to the circle ${ x }^{ 2 }+{ y }^{ 2 }={ a }^{ 2 }$ and $\cot { { \theta  } _{ 1 } } +\cot { { \theta  } _{ 2 } } =k$, then the locus of $P$ is

  1. $k\left( { y }^{ 2 }+{ a }^{ 2 } \right) =2xy$

  2. $k\left( { y }^{ 2 }-{ a }^{ 2 } \right) =2xy$

  3. $k\left( { y }^{ 2 }+{ a }^{ 2 } \right) =4xy$

  4. none of these


Correct Option: B
Explanation:

Equation of the circle is ${ x }^{ 2 }+{ y }^{ 2 }={ a }^{ 2 }$    ...(1)

Let $P$ be the point $\left( { x } _{ 1 },{ y } _{ 1 } \right) $.
Equation of any tangent to (1) is $y=mx+a\sqrt { 1+{ m }^{ 2 } } $
It is passes through $P\left( { x } _{ 1 },{ y } _{ 1 } \right) $, then
${ y } _{ 1 }=m{ x } _{ 1 }+a\sqrt { 1+{ m }^{ 2 } } \Rightarrow { y } _{ 1 }-m{ x } _{ 1 }=a\sqrt { 1+{ m }^{ 2 } } $
Squaring ${ { y } _{ 1 } }^{ 2 }+2mx _{ 1 }{ y } _{ 1 }+{ m }^{ 2 }{ { x } _{ 1 } }^{ 2 }={ a }^{ 2 }\left( 1+{ m }^{ 2 } \right)$
$ \Rightarrow \left( { { x } _{ 1 } }^{ 2 }-{ a }^{ 2 } \right) { m }^{ 2 }-2{ x } _{ 1 }{ y } _{ 1 }m+\left( { { y } _{ 1 } }^{ 2 }-{ a }^{ 2 } \right) =0$   ...(2)
This is a quadratic in $m$. If ${ m } _{ 1 }$ and ${ m } _{ 2 }$ are its roots, then these are the slopes of the tangents from $P$.
Since inclination of tangents are given to be ${\theta} _{1}$ and ${\theta} _{2}$
$\therefore$ Let ${ m } _{ 1 }=\tan{{\theta} _{1}}$ and ${ m } _{ 2 }=\tan{{\theta} _{2}}$ 
$\displaystyle \Rightarrow \frac { 1 }{ { m } _{ 1 } } +\frac { 1 }{ { m } _{ 2 } } =k\Rightarrow { m } _{ 1 }+{ m } _{ 2 }=k{ m } _{ 1 }{ m } _{ 2 }$
$\displaystyle \therefore \frac { 2{ x } _{ 1 }{ y } _{ 1 } }{ { { x } _{ 1 } }^{ 2 }-{ a }^{ 2 } } =k.\frac { { { y } _{ 1 } }^{ 2 }-{ a }^{ 2 } }{ { { x } _{ 1 } }^{ 2 }-{ a }^{ 2 } } \Rightarrow 2{ x } _{ 1 }{ y } _{ 1 }=k\left( { { y } _{ 1 } }^{ 2 }-{ a }^{ 2 } \right) $
$\therefore $ Locus of $P$ is $k\left( { y }^{ 2 }{ -a }^{ 2 } \right) =2xy$

The angle between the tangents from the origin to the circle $(x-7)^{2}+(y+1)^{2}=25$ is

  1. $\displaystyle \frac{\pi}{3}$

  2. $\displaystyle \frac{\pi}{6}$

  3. $\displaystyle \frac{\pi}{2}$

  4. $\displaystyle \frac{\pi}{8}$


Correct Option: C
Explanation:

$(x-7)^2+(y+1)^2=25$
PA=PB=length of tangent from $(0,0) \space  to \space  (x-7)^2+(y+1)^2-25=0$
$=\sqrt{51}$
$\Rightarrow PA=PB=\sqrt{7^2+1-25}=5$
In $\Delta  OAP,$
$\tan  \alpha =\dfrac{OA}{PA}=\dfrac{5}{5}=1$
$\alpha =45^{\circ}$
So, angle both tangents $ =2\alpha =90^{\circ}$

The number of tangents that can be drawn from (1, 2) to $x^2+y^2=5$ is

  1. 1

  2. 2

  3. 3

  4. 0


Correct Option: A

Two secants PAB and PCD are drawn to a circle from an outside point P. Then, which of the following is true?

  1. PA. PB =PC +CD

  2. PA. PB =PC. PD

  3. PA+PB=PC+PD

  4. PA-PB = PC. CD


Correct Option: B

State true or false
The angle between two tangents to circle may be ${0^0}$

  1. True

  2. False


Correct Option: A
Explanation:

true 

the angles between tangents to a circle can be zero if the tangents are parallel {if the tangents are drawn on opposite sides of a diameter}

State true or false
The length of tangent from an external point on a circle is always greater than the radius of the circle.

  1. True

  2. False


Correct Option: B
Explanation:

false, it is not always required it can even be less or greater than the radius of the circle, it depend on how far the point is from the center of the circle. 

State true or false
The length of tangent from an external point P on a circle with centre O is always less than OP.

  1. True

  2. False


Correct Option: A
Explanation:

true 

since if the tangent intersects the circle at Q the PQO forms a right angled triangle with hypotenuse PO so the length PQ is always less than PO as hypotenuse is the largest in a triangle.

Two tangents are drawn to a circle and the angle between them is $\displaystyle { 30 }^{ \circ  }$. What is the angle between the radii that are drawn at the point of contact of these two tangents.

  1. $\displaystyle { 30 }^{ \circ }$

  2. $\displaystyle { 60 }^{ \circ }$

  3. $\displaystyle { 90 }^{ \circ }$

  4. $\displaystyle { 150 }^{ \circ }$


Correct Option: D

$ABC$ is a right triangle with $\angle A = 90^{\circ}$. Let a circle touch tangent $\overline {AB}$ at A and tangent $\overline {BC}$ at some point D. Suppose the circle intersects $\overline {AC}$ again at E and $CE = 3 cm, CD = 6 cm$, find the measure of BD

  1. $9 cm$

  2. $3\sqrt {5} cm$

  3. $3 cm$

  4. $2 cm$


Correct Option: A
Explanation:

Given $\angle BAC = 90^\circ$

$AB$ is tangent at $A$

$BDC$ is tangent at $D$

$CE = 3,CD =  6$

According to the tangent-secant theorem the length of tangent segment squared equals the product of secant segment and its external segment.

$\implies AC \times CE = CD^2$

$AC = \dfrac{6^2}{3} = 12$

$AE = 12 – CE = 9 = d = 2r$

Let $O$ be the center of the circle

$OA = OD = r$

$AB = BD = l$, tangents drawn from $B$

Since $\angle A = 90$

$BC^2 = AC^2 + AB^2$

$\implies (l + CD)^2 = AC^2 + l^2$

$\implies l^2 + 6^2 + 12l = 12^2 + l^2$

$\implies 12l = 108$

$BD = l = 9 \, cm = $ length of tangent

The value of $k$ for which two tangents can be drawn from $(k , k)$ to the circle $x^2 + y^2 + 2x + 2y 16 = 0$ is

  1. $k\ \epsilon\ R^+$

  2. $k\ \epsilon \ R$

  3. $k\ \epsilon\ ( -\infty , -4) \cup ( 2, \infty )$

  4. $k\ \epsilon\ ( 0, 1]$


Correct Option: C
Explanation:

For two tangents to be drawn to $C(x, y):$

$\implies x^2 + y^2 +2x +2y – 16 = 0$

From P(k,k) , the point  P must lie outside the circle

$\implies C(k,k) > 0$

$\implies k^2 + k^2 + 2k + 2k – 16  > 0$

$\implies k^2 + 2k – 8 > 0$

$\implies (k + 4)(k - 2) > 0$

$\implies k \in (-\infty,-4) \cup (2,\infty)$

The area of the triangle formed by the tangents from the point $( 4, 3 )$ to the circle $x^{2} + y^{2} = 9$ and the line joining their points of contact is

  1. $\dfrac{25}{192}$ sq. units

  2. $\dfrac{192}{25}$ sq. units

  3. $\dfrac{384}{25}$ sq. units

  4. None of these


Correct Option: B
Explanation:

Area of triangle $ = \dfrac {RL^3}{L^2 + R^2}$
where R = radius of the circle = 3
L = length of tangent $ = \sqrt {S _1} = \sqrt {16 + 9 - 9} = 4$
Hence area $ = \dfrac {192}{25} sq.$ units

The angle between the two tangents from the origin to the circle ${ \left( x-7 \right)  }^{ 2 }+{ \left( y+1 \right)  }^{ 2 }=25$ equals

  1. $\cfrac { \pi }{ 6 } $

  2. $\cfrac { \pi }{ 3 } $

  3. $\cfrac { \pi }{ 2 } $

  4. $\cfrac { \pi }{ 4 } $


Correct Option: C
Explanation:

The equation of any line through the origin $(0,0)$ is

$y = mx +c$

If it is a tangent to the circle $(x−7)2+(y+1)2=52$, then

 

$ \dfrac{\left| 7m+1 \right|}{\left| \sqrt{{{m}^{2}}+1} \right|}=5 $

$ {{\left( 7m+1 \right)}^{2}}=5.\left( {{m}^{2}}+1 \right) $

$ 24{{m}^{2}}+14m-24=0 $

 

This equation, being a quadratic in m, gives two values of m, say ${{m} _{1}}$  and${{m} _{2}}$  These two values of m are the slopes of the tangents drawn from the origin to the given circle.

From (i), we have ${{m} _{1}}\times {{m} _{2}}=-1$

 

Hence, the two tangents are perpendicular.

 

Ans: C

For the circle ${ x }^{ 2 }+{ y }^{ 2 }={ r }^{ 2 }$, find the value of $r$ for which the area enclosed by the tangents drawn from the point $P(6,8)$ to the circle and the chord of contact is maximum.

  1. $5$

  2. $6$

  3. $8$

  4. $4$


Correct Option: A
Explanation:

Let the angle between the tangents is $\theta\implies \tan \dfrac{\theta}{2}=\dfrac{r}{\sqrt{6^{2}+8^{2}-r^{2}}}$

$\implies \sin \dfrac{\theta}{2}=\dfrac{r}{10},\cos \dfrac{\theta}{2}=\dfrac{\sqrt{100-r^{2}}}{10}$
Area of triangle is $\dfrac{1}{2}(\sqrt{S _{11}})^{2}\sin \theta=\dfrac{r(100-r^{2})^{3/2}}{100}$
Let $f(x)=r(100-r^{2})^{3/2}\implies f'(x)=(100-r^{2})^{1/2}(100-4{r^{2})}=0\implies r^{2}=25\implies r=5$
For area to be maximum $r=5$

Write True or False and justify your answer in each of the following :


The length of tangent from an external point P on a circle with centre O is always less than OP.

  1. True

  2. False

  3. Data insufficient

  4. Ambiguous


Correct Option: B
Explanation:

$ Given-\ PA\quad &amp; \quad PB\quad are\quad tangents\quad to\quad the\quad circle\quad wtth\quad centre\quad O\ at\quad A\quad &amp; \quad B\quad respectively.\ To\quad find\quad out-\ The\quad assertion,\quad PA\quad or\quad PB\quad is\quad always\quad >\quad OA\quad or\quad OB,\quad is\quad \ true\quad or\quad false.\ Justification-\ PA\quad &amp; \quad PB\quad are\quad tangents\quad to\quad the\quad circle\quad at\quad A\quad &amp; \quad B\quad respectively.\ \therefore \quad PA\quad =\quad PB\quad and\quad \angle OAP\quad &amp; \quad \angle OBP\quad are={ 90 }^{ o }\ \therefore \quad \Delta OAP\quad is\quad a\quad right\quad one\quad with\quad \angle A={ 90 }^{ o }\ \Longrightarrow \angle AOP+\angle APO={ 90 }^{ o }\quad (by\quad angle\quad sum\quad prqperty\quad of\quad triangles)\ case\quad I-\quad \angle AOP=\angle APO\Longrightarrow each\quad of\quad them={ 45 }^{ o }.\quad i.e\quad PA=OA\ case\quad II-\quad \angle AOP>\angle APO\Longrightarrow \angle AOP>{ 45 }^{ o }\quad &amp; \quad \angle APO<{ 45 }^{ o }\quad \ (in\quad a\quad \Delta \quad the\quad side\quad opposite\quad to\quad the\quad greater\quad angle\quad is\quad greater\quad than\quad the\quad side\quad \ opposite\quad to\quad the\quad smaller\quad angle)\ \Longrightarrow PA>OA\ case\quad III-\quad \angle AOP<\angle APO\Longrightarrow \angle AOP{ <45 }^{ o }\quad &amp; \quad \angle APO>{ 45 }^{ o }\quad (\quad same\quad argument\quad as\quad case\quad II)\ \Longrightarrow PA>OA\ So\quad the\quad assertion,\quad PA\quad or\quad PB\quad is\quad always\quad <\quad OA\quad or\quad OB,\quad is\quad false.\ Ans-\quad False. $

To draw a pair of tangents to a circle which are inclined to each other at an angle of $60^0$, it is required to draw tangents at endpoints of those two radii of the circle, the angle between them should be

  1. $135^{0}$

  2. $90^{0}$

  3. $60^{0}$

  4. $120^{0}$


Correct Option: D
Explanation:

Given:

$ PA$ & $PB$ are two tangents drawn from P to a circle with centre O at A & B respectively. 
$\angle APB={ 60 }^{ o }$ 
To find out-
$ \angle AOB$ 
Solution-
$ PA$ & $PB$ are two tangents drawn from P to the circle at A & B, respectively.
$ \therefore  PA=PB\Longrightarrow \Delta PAB$ is isosceles. 
i.e $\angle PAB=\angle PBA.$ 
or $\angle PAB+\angle PBA=2\angle PAB$  .....(i)
Now, $\angle PAB+\angle PBA+\angle APB={ 180 }^{ o }$    ....(angle sum property of triangles)
$ \Longrightarrow \angle PAB+\angle PBA{ +60 }^{ o }={ 180 }^{ O }$
$\Longrightarrow 2\angle PAB={ 120 }^{ o }$     ...(from i)
$ \therefore  \angle PAB={ 60 }^{ o }=\angle PBA$  .........(ii)
Again, $\angle OAP={ 90 }^{ o }$    ....(angle between a radius and the tangent at the point of contact.)
$ \therefore \angle OAB=\angle OAP-\angle PAB={ 90 }^{ o }-{ 60 }^{ o }$    .... (from ii)    .........(iii)
Since, $OA=OB$     ...(radii of the same circle)
$ \therefore  \Delta OAB$ is isosceles
$\Longrightarrow \angle OAB=\angle OBA={ 30 }^{ o }$   ....(from iii)
So, $\angle AOB={ 180 }^{ o }-(\angle OAB+\angle OBA)={ 180 }^{ o }-{ 30 }^{ o }-{ 30 }^{ O }={ 120 }^{ O }$      ...(angle sum property of triangles)

If two tangents inclined at an angle of $60^{\circ}$ are drawn to a circle of radius 3 cm, then length of the tangent is equal to :

  1. $\sqrt{3}cm$

  2. $2\sqrt{3}cm$

  3. $\frac{2}{\sqrt{3}}cm$

  4. $3\sqrt{3}cm$


Correct Option: D
Explanation:

Tangent is perpendicular to radius at the point of contact.

By symmetry with respect to the line joining the center and the point from which tangents are drawn, we have the length of tangent $= \dfrac{3}{\tan 30^o} = 3\sqrt{3} cm$.
So option D is the right answer.

The equation of tangent to the circle ${x^2} + {y^2} = 36$ which are incline at the angle of  ${45^ \circ }$ to the $x-$axis are 

  1. $x + y = \pm \sqrt 6 $

  2. $x = y \pm 3\sqrt 2 $

  3. $y = x \pm 6\sqrt 2 $

  4. None of these


Correct Option: A

A tangent drawn from the point (4, 0) to the circle $\displaystyle x^{2}+y^{2}=8 $ touches it at a point A in the first quadrant. The coordinates of another point B on the circle such that $AB$ = 4 are

  1. $(2, -2)$

  2. $(-2, 2)$

  3. $\displaystyle \left ( -2\sqrt{2},0 \right ) $

  4. $\displaystyle \left ( 0,-2\sqrt{2} \right ) $


Correct Option: A
Explanation:

$x^2  + y^2 = (2\sqrt 2)^2 , C = (0,0) , r = 2 \sqrt 2$

Let $y = mx + 2\sqrt 2 \sqrt{m^2 + 1}$ be a tangent

To find the tangent through $(4,0)$ substitute into the equation

$\implies 0 = 4m +2\sqrt 2 \sqrt{m^2 + 1}$

$\implies 16m^2 = 8(m^2 + 1)$

$\implies m = -1$

Equation is

$y = -x + 4$

Substituting in circle equation

$x^2 + (-x + 4)^2 = 8$

$\implies 2x^2 – 8x + 8 = 0$

$\implies x = 2 \implies y = 2$

$A = (2,2)$

Any point on the circle is given be$ (2\sqrt2 \cos \theta, 2\sqrt2 \sin \theta )$

Let B = $(2\sqrt2 \cos \theta _1, 2\sqrt2 \sin \theta _1)$

$AB = 4 \implies AB^2 = 16$

$\implies (2\sqrt2 \cos \theta _1, -2)^2 + (2\sqrt2 \sin \theta _1 - 2)^2 = 16$

$\implies 8 + 4 + 4 – 4\sqrt 2(\cos \theta _1 + \sin \theta _1) = 16$

$\implies \sin \theta _1 + \cos \theta _1 = 0$

$\theta _1 = \dfrac{-\pi}{4}$

$B = (2\sqrt 2 \times\dfrac{1}{\sqrt 2} 2\sqrt 2 \times\dfrac{-1}{\sqrt 2})  = (2,-2)$

A parabola $y = ax^2 + bx + c$ crosses the x-axis at $(\alpha, 0)$ $(\beta, 0)$ both to the right of the origin. A circle also passes through these two points. The length of the tangent from the origin to the circle is

  1. $\displaystyle \sqrt{\frac{bc}{a}}$

  2. $ac^2$

  3. $\displaystyle \frac{b}{a}$

  4. $\displaystyle \sqrt{\frac{c}{a}}$


Correct Option: D
Explanation:

$OT$ is a tangent and $OAB$ is a secant 


we know that

$OT^2 =OA.OB$

         $=\alpha\beta$

         $=\dfrac{c}{a}$ (Since $\alpha,\beta $ are the roots of $y=ax^2+bx+c$)

$\Rightarrow OT=\sqrt{\dfrac{c}{a}}$

From a point $R(5, 8)$ two tangents $RP$ and $RQ$ are drawn to a given cirlce $S = 0$ whose radius is $5$. If circumcentre of the triangle PQR is $(2, 3)$, then the equation of circle $S= 0$ is

  1. $x^2 + y^2 + 2x + 4y - 20 = 0$

  2. $x^2 + y^2 + x + 2y - 10 = 0$

  3. $x^2 + y^2 - x - 2y - 20 = 0$

  4. $x^2 + y^2 - 4x - 6y - 12 = 0$


Correct Option: A

The radius of the circle touching the straight lines $x-2y-1=0$ and $3x-6y+7=0$ is

  1. $\cfrac { 3 }{ \sqrt { 5 } } $

  2. $\cfrac { \sqrt { 5 } }{ 3 } $

  3. $\sqrt { 5 } $

  4. $\cfrac { 1 }{ \sqrt { 2 } } $


Correct Option: B
Explanation:

Diameter of circle=distance of the point (1,0)
from $3x-6y+7=0$
$\therefore$ $\cfrac { 3(1)-6(0)+7 }{ \sqrt { { \left( 3 \right)  }^{ 2 }+{ \left( -6 \right)  }^{ 2 } }  } =\cfrac { 10 }{ \sqrt { 45 }  } =\cfrac { 2 }{ 3 } \sqrt { 5 } $
Now, radius of circle $=\cfrac { 1 }{ 2 } \left( \cfrac { 2 }{ 3 } \sqrt { 5 }  \right) =\cfrac { \sqrt { 5 }  }{ 3 } $

For what positive value(s) of K will the graph of the equation $2x + y = K$ be tangent to the graph of the equation $x^2+ y^2= 45$?

  1. 5

  2. 10

  3. 15

  4. 20

  5. 25


Correct Option: C
Explanation:
  • The radius of circle is $\sqrt{45} = 3\sqrt5$ , center of circle is $(0,0)$
  • For the equation to be tangent to circle , the distance from center of circle to given line must be equal to radius of circle
  • So we get $k/\sqrt5 = 3\sqrt5$ , which gives $k=15$

AB and CD are two chords of a circle which when produced to meet at a point P such that AB = 5 cm, AP = 8 cm and CD = 2 cm then PD = 

  1. 12 cm

  2. 5 cm

  3. 6 cm

  4. 4 cm


Correct Option: D
Explanation:

By intersecting secant theorem,

$PA$$\times$$PB$ = $PD$$\times$$PC$
$8$cm$\times$$3$cm = PD$\times$(PD+CD)
24${ cm }^{ 2 }$ = PD$\times$(PD+2)
${ PD }^{ 2 }$ $+ 2PD - 24 =0$
On Solving the above quadratic equation, we get
${ PD }^{ 2 }$$+6PD-4PD-24=0$
$(PD+6)$$\times$$(PD-4)=0$
$PD=4$cm & $-6$cm
So, $PD= 4$cm is the real solution

If the line $\displaystyle ax+by + c =0$ touches the circle $\displaystyle x^2 + y^2 -2x = \frac{3}{5}$ and is normal to the circle $\displaystyle x^2 + y^2 + 2x - 4y + 1 =0$, then $(a,b)$ are

  1. $(1, 3)$

  2. $(3, 1)$

  3. $(1, 2)$

  4. $(2, 1)$


Correct Option: B
Explanation:

$x^2+y^2-2x=\dfrac {3}{5}\Rightarrow (x-1)^2+y^2=\dfrac {8}{5}$

So, Radius, $R=2\sqrt {\dfrac {2}{5}}$ and it's center is at $(1,0)$

ie, Distance, $d$ from the circle to $ax+by+c=0$ is,
$d=\dfrac {a\times 1+b\times 0+c}{\sqrt{a^2+b^2}}=\dfrac {a+c}{\sqrt{a^2+b^2}} =2\sqrt {\dfrac {2}{5}}\longrightarrow (1)$ (Inorder to satisfy the criterion of a tangent)

$x^2+y^2+2x-4y+1=0 \Rightarrow (x+1)^2+(y-2)^2=4$
So, It's center is at $((-1),2)$
As $ax+by+c=0$ is normal to the circle, it should go through the centre of the circle.
ie, $a-2b=c$ and $(y-2)=m(x+1)\longrightarrow (2)$

Substituting $c$ in (1),
$\dfrac {a+(a-2b)}{\sqrt{a^2+b^2}} =2\sqrt {\dfrac {2}{5}}$
$\Rightarrow \dfrac {a-b}{\sqrt {a^2+b^2}}=\sqrt {\dfrac {2}{5}}$

So, we can say $(a-b)=k\sqrt {2}$ and $a^2+b^2=5k^2$ foe some constant $k$.
$a^2+b^2-(a-b)^2=2ab=5k^2-2k^2=3k^2$
$(a-b)^2+4ab=(a+b)^2=6k^2+2k^2=8k^2\Rightarrow (a+b)=2k\sqrt{2}$
$a=\dfrac {1}{2}((a+b)+(a-b))=\dfrac {1}{2}(3k\sqrt{2})$
$b=\dfrac {1}{2}((a+b)-(a-b))=\dfrac {1}{2}(k\sqrt {2})$

Slope of the line, $m=\dfrac {dy}{dx}$
$\dfrac {d}{dx}(ax+by+c)=0\Rightarrow a+b\dfrac {dy}{dx}=0$
ie, $m=\dfrac {(-a)}{b}=(-3)$ (from above equations of $a$ and $b$)

Substituting the slope in (2),
$(y-2)=(-3)(x+1)\Rightarrow 3x+y+1=0$

Compairing with general equation given,
$(a,b)=(3,1)$

Option B is the correct answer.

- Hide questions