0

Two dimensional analytical geometry - class-XI

Description: two dimensional analytical geometry
Number of Questions: 87
Created by:
Tags: fundamentals straight lines two dimensional analytical geometry maths
Attempted 0/85 Correct 0 Score 0

Find $a$ if the distance between $(a , 2)$ and $(3 , 4)$  is $8 $

  1. $ 3 \, \pm \, \sqrt {60}$

  2. $ 4 \, \pm \, \sqrt {60}$

  3. $ 3 \, \pm \, \sqrt {6}$

  4. None of these


Correct Option: A
Explanation:

By square of distance formual:


$8^2=(3-a)^2+(4-2)^2$

$=>64=a^2-6a+13$

$=>a^2-6a-51=0$

solving the quadratic we get:

$a=(3+\sqrt(60)$ or $(3-\sqrt(60))$.

The equation of the line which passes through $(0,0)$ and $(1,1)$ is ____________

  1. $y=x$

  2. $y=-x$

  3. $y=1$

  4. $x=1$


Correct Option: A
Explanation:

The equation of the line which passes through (0,0) and (1,1) is y=x

As we know, the two points are $(0,0) (1,1)$
slope $ m$ $=\dfrac { { y } _{ 2 }-{ y } _{ 1 } }{ { x } _{ 2 }-{ x } _{ 1 } } $  $=\dfrac { 1-0 }{ 1-0 } =1$
Standard equation of the line is $y-{ y } _{ 1 }=m\left( x-{ x } _{ 1 } \right) $
Substituting value of $m =1 $ and point $(x,y) =  (0,0)$ we get:
$y-0=1\left( x-0 \right) $
 $y=x$ is the required equation of the line

Write an equation of the horizontal line through the point $(7,-5)$

  1. $-5y=7x+3$

  2. $y=-5$

  3. $x=7$

  4. none of these


Correct Option: B
Explanation:

The equation of a straight line is $y = mx +b$

For a horizontal line $m = 0$.
So, $y = b$ and since the line must pass through $x = 7, y = - 5$, 

$b$ must be $-5$
Therefore, $y=-5$.

The equation of a straight line passing through points $(0,0)$ and $(1,5)$ is given by:

  1. $y=x$

  2. $y=5x$

  3. $5y=x$

  4. $y=x+5$


Correct Option: B
Explanation:

Given a line passes through $A(0,0)$ & $B(1,5)$ 

We know that the equation of line which passes through $(a _1,b _1)$ & $\left( { a } _{ 2 },{ b } _{ 2 } \right) $ is 
$y-{ b } _{ 1 }=\cfrac { { b } _{ 2 }-{ b } _{ 1 } }{ { a } _{ 2 }-{ a } _{ 1 } } (x-{ a } _{ 1 })\ \therefore \quad y-0=\cfrac { 5-0 }{ 1-0 } (x-0)\ y=5x$ 

For any real value of $\lambda$, the equation $2x^2+3y^2-8x-6y+11-\lambda =0$ doesn't represents a pair of straight lines?

  1. True

  2. False


Correct Option: A
Explanation:

The second degree terms cannot be factorized into two linear factors or else $h^2-ab=0-6=-$ve. Hence the given equation does not represent a pair of lines whatever $\lambda$ may be.

The base at a triangle passes through a fixed point $(a, b)$ and its sides are respectively bisected at right angles by the lines $y^{2} - 4xy - 5x^{2} = 0$. Find locus of its vertex.

  1. $2 \, (x^2 \, + \, y^2)  + (3a + 2b) x + (2a - 3b) y = 0$

  2. $2 \, (x^2 \, + \, y^2)  - (3a + 2b) x + (2a - 3b) y = 0$

  3. $2 \, (x^2 \, + \, y^2)  + (3a + 2b) x - (2a - 3b) y = 0$

  4. None of these


Correct Option: A

The differential equation of the curve such that the ordinates of any point is equal to the corresponding subnormal at that point is

  1. a linear equation

  2. a non-homogeneous equation

  3. an equation with separable variable

  4. none of these


Correct Option: A
Explanation:

The differential equation of the curve such that the ordinate of the any point is equal to the  corresponding subnormal at that point is a linear equation.

Let a and b be non-zero real numbers. Then, the equation $(ax^2+by^2+x)(x^2-5xy+6y^2)=0$ represents.

  1. Four straight lines, when $c=0$ and a, b are of the same sign

  2. Two straight lines and a circle, when $a=b$, and c is of sign opposite to that of a

  3. Two straight lines and a hyperbola, when a and b are of the same sign and c is of sign opposite to that of a

  4. A circle and an ellipse, when a and b are of the same sign and c is of a sign opposite to that of a


Correct Option: B

The equation $x^2y^2-2xy^2-3y^2-4x^2y+8xy+12y=0$ represents.

  1. A pair of lines

  2. Pair of lines and a circle

  3. A pair of lines and a parabola

  4. Four lines forming a square


Correct Option: D
Explanation:

Collecting the terms $y^2$ and y the given equation can be written as
$y^2(x^2-2x-3)-4y(x^2-2x-3)=0$
or $(x-3)(x+1)y(y-4)=0$
It represents four lines $x=-1$, $x=3$, $y=0$ and $y=4$.
These two sets of parallel lines form a square of side four.

Perpendicular distance between line $2x + y  =5,  2x + y  =3$ 

  1. $\dfrac{1}{{\sqrt 2 }}$

  2. $\sqrt 2 $

  3. $\dfrac{{2 }}{\sqrt 5}$

  4. $\dfrac{3}{{\sqrt 2 }}$


Correct Option: C
Explanation:

The given lines are


$2x+y=3\cdots(1)$

$2x+y=5\cdots(2)$

The perpendicular distance between lines is given as 

$\dfrac{|c _1-c _2|}{\sqrt {a^2+b^2}}$

$\dfrac{|5-3|}{\sqrt{ 2^2+1^2}}$

$\dfrac{2}{\sqrt 5}$

Equation $4x^{2}+4xy-y^{2}-6x-3y-4=0$ represents a pair of parallel lines, then distance between these lines is

  1. $2\sqrt{5}$

  2. $\sqrt{5}$

  3. $\dfrac{2}{\sqrt{5}}$

  4. $\dfrac{3}{\sqrt{5}}$


Correct Option: A

The difference of the slopes of the lines $x ^ { 2 } \left( \sec ^ { 2 } \theta - \sin ^ { 2 } \theta \right) - ( 2 \tan \theta ) x y + y ^ { 2 } \sin ^ { 2 } \theta = 0$

  1. $1$

  2. $2$

  3. $3$

  4. $4$


Correct Option: B
Explanation:

According to the question..........

$\begin{array}{l} Let,\, { m _{ 1\,  } }& \, { m _{ 2 } } \ sum\, of\, the\, slope:\, { m _{ 1 } }+{ m _{ 2 } }=\dfrac { { -2h } }{ b } ----(i) \ and,\,  \ product\, of\, slope:{ m _{ 1 } }.\, { m _{ 2 } }=\dfrac { a }{ b } -----(ii) \ Here, \ a{ x^{ 2 } }+2hxy+b{ y^{ 2 } }=0.........(general\, equ\, of\, straight\, line.) \ cofficient\, of: \ a={ \sec ^{ 2 }  }\theta -{ \sin ^{ 2 }  }\theta  \ h=-\tan  \theta  \ b={ \sin ^{ 2 }  }\theta  \ Now,\, value\, put\, { { into } } \ sum\, of\, the\, slope:\, { m _{ 1 } }+{ m _{ 2 } }=\dfrac { { -2h } }{ b } ----(i) \ \Rightarrow { m _{ 1 } }+{ m _{ 2 } }=\dfrac { { -2(-tan\theta ) } }{ { { { \sin   }^{ 2 } }\theta  } } =\dfrac { { 2\sin  \theta \times 2 } }{ { 2{ { \sin   }^{ 2 } }\theta \, .\, \cos  \theta  } } =\dfrac { 4 }{ { 2sin\theta \cos  \theta  } } =\dfrac { 4 }{ { \sin  2\theta  } }  \ and, \ product\, of\, slope:{ m _{ 1 } }+{ m _{ 2 } }=\dfrac { a }{ b } -----(ii) \ \Rightarrow { m _{ 1 } }.\, { m _{ 2 } }=\dfrac { { { { \sec   }^{ 2 } }\theta -{ { \sin   }^{ 2 } }\theta  } }{ { { { \sin   }^{ 2 } }\theta  } } =\dfrac { 1 }{ { { { \sin   }^{ 2 } }\theta \, .\, { { \cos   }^{ 2 } }\theta  } } -1\, \, \, \, \, \, \, \, \left[ { divide\, by\, 4 } \right.  \ \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, =\dfrac { 4 }{ { 4{ { \sin   }^{ 2 } }\theta \, .\, { { \cos   }^{ 2 } }\theta  } } -1\, \, =\dfrac { 4 }{ { { { (\sin  2\theta ) }^{ 2 } }\,  } } -1\,  \ \, \, \, Now,find\, difference: \ \, \, \, \, \, \, \, \, \, { ({ m _{ 1 } }-{ m _{ 2 } })^{ 2 } }={ ({ m _{ 1 } }+{ m _{ 2 } })^{ 2 } }-4{ m _{ 1 } }.\, { m _{ 2 } } \ \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, ={ \left( { \dfrac { 4 }{ { \sin  2\theta  } }  } \right) ^{ 2 } }-4\left( { \dfrac { 4 }{ { ({ { \sin   }^{ 2 } }2\theta )\,  } } -1\,  } \right)  \ \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, =\dfrac { { 16 } }{ { ({ { \sin   }^{ 2 } }2\theta )\,  } } -\, \dfrac { { 16 } }{ { ({ { \sin   }^{ 2 } }2\theta )\,  } } +4 \ \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \Rightarrow \, \, { ({ m _{ 1 } }-{ m _{ 2 } })^{ 2 } }\, \, \, =4 \ \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \Rightarrow \, ({ m _{ 1 } }-{ m _{ 2 } })=+\sqrt { 4 } =2 \ \, \, \, \therefore \, \, \, the\, \, differece\, of\, slope\, \, is\, 2. \ So,\, that\, the\, correct\, option\, is\, B.\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \,  \end{array}$

Curves $a{ x }^{ 2 }+2hxy-2gx-2fy+c=0$ and $a'{ x }^{ 2 }-2hxy+(a'+a-b){ y }^{ 2 }-2g'x-2f'y+c=0\quad $ intersect at four concyclic points $A,B,C$ and $D$. If $P$ is the point $\left( \cfrac { g'+g }{ a'+a } ,\cfrac { f'+f }{ a'+a }  \right) $, then which of the following is/are true

  1. $P$ is also concyclic with points $A,B,C,D$

  2. $PA,PB,PC$ in G.P

  3. ${ PA }^{ 2 }+{ PB }^{ 2 }+{ PC }^{ 2 }=3{ PD }^{ 2 }\quad $

  4. $PA,PB,PC$ in AP


Correct Option: A

The four straight lines given by the equations $12x^2+7xy-12y^2=0$ and $12x^2+7xy-12y^2-x+7y-1=0$ lie along the sides of a 

  1. Square

  2. Rhombus

  3. Rectangle

  4. None of these


Correct Option: A
Explanation:

taking $y$ is constant and finding the value of$x$ by roots formula.


$12x^2+(7y)x-12y^2=0$

$x=\dfrac{-b\pm \sqrt{b^2-4ac}}{2a}=\dfrac{(7y)-\sqrt{(7y)^2-4(-12)y^212}}{2\times 12}$

$\dfrac{\Rightarrow x=-7y\pm\sqrt{49y^2+576y^2}{}}{2\times 12}$

$\Rightarrow 24x=-7y\pm \sqrt{625}y$

$\Rightarrow 24xy=-7y\pm 25y$.........(1)

Again $12x^2+(7y-1)x+(-12y^2-1+7y)=0$

$\therefore x=\dfrac{-(7y-1)\pm\sqrt{(7y-1)^2-4}(12)(7y-1-12y^2)}{24}$

$\Rightarrow x=\dfrac{1-7y\pm\sqrt{49y^2+1-14y-336y+48+576y^2}}{24}$

$\Rightarrow 24x=1-7y\pm\sqrt{625y^2-350y+49}$

$\Rightarrow 24x=1-7y\pm (25y-7)$

$\Rightarrow x=\dfrac{1-7y\pm 25y-7}{24}$........(ii)

from (i) and (ii) we can clearly see co.efficient of $x$ and $y$ are same so slope are sample $m _1=\dfrac{24}{18},m _2=-\dfrac{24}{32}$

So $m _1m _2= -1$

$\therefore $ it is a square

The value of $k$ so that the equation $12{x}^{2}-10{y}^{2}+11x-5y+k=0$ may represent a pair of straight lines is

  1. $k=\dfrac{91}{48}$

  2. $k=\dfrac{94}{43}$

  3. $k=\dfrac{83}{23}$

  4. None of these


Correct Option: A
Explanation:

$\Rightarrow$  The given equation is $12x^2-10y^2+11x-5y+k=0$

$\Rightarrow$  Comparing it with $ax^2+2hxy+by^2+2gx+2fy+c=0$
$\Rightarrow$  $a=12,\,b=-10,\,h=o,\,g=\dfrac{11}{2},\,f=\dfrac{-5}{2},\,c=k$
$\Rightarrow$  The condition is $abc+2fgh-af^2-bg^2-ch^2=0$
$\Rightarrow$  $12\times (-10)\times k+2\times (\dfrac{-5}{2})\times\dfrac{11}{2}\times 0-12\times (\dfrac{-5}{2})^2-(-10)\times (\dfrac{11}{2})^2-k\times (0)^2=0$
$\Rightarrow$  $-120k+0-75+\dfrac{605}{2}-0=0$
$\Rightarrow$  $\dfrac{-240k-150+605}{2}=0$
$\Rightarrow$  $-240k+455=0$
$\Rightarrow$  $k=\dfrac{455}{240}$
$\therefore$   $k=\dfrac{91}{48}$

If the pair of lines ${x^2}\, + \,2xy\, + \,a{y^2}\, = \,0$ and $a{x^2}\, + \,2xy\, + \,{y^2}\, = \,0$ have exactly one line in common, then joint equation of the other two lines is given by

  1. $3{x^2}\, + \,8xy\, - 3\,{y^2}\, = \,0$

  2. $3{x^2}\, + \,10xy\, + 3\,{y^2}\, = \,0$

  3. ${y^2}\, + \,2xy\, - 3\,{x^2}\, = \,0$

  4. ${x^2}\, + \,2xy\, - 3\,{y^2}\, = \,0$


Correct Option: B

The lines $2x^2+6xy+y^2=0$ are equally inclined to the lines $4x^2+18xy+by^2=0$ when $b=1$

  1. True

  2. False


Correct Option: A
Explanation:
Consider the equation $2{x}^{2}+6xy+{y}^{2}=0$
Equation of angle bisector is 
$\dfrac{{x}^{2}-{y}^{2}}{2-1}=\dfrac{xy}{3}$      
$\dfrac{{x}^{2}-{y}^{2}}{1}=\dfrac{xy}{3}$
$\dfrac{{x}^{2}-{y}^{2}}{xy}=\dfrac{1}{3}$         .......$(1)$
Consider the equation $4{x}^{2}+18xy+b{y}^{2}=0$
Equation of angle bisector is 
$\dfrac{{x}^{2}-{y}^{2}}{4-b}=\dfrac{xy}{9}$ 
$\dfrac{{x}^{2}-{y}^{2}}{xy}=\dfrac{4-b}{9}$      .......$(2)$
From $(1)$  and $(2)$ we have
$\dfrac{{x}^{2}-{y}^{2}}{xy}=\dfrac{1}{3}=\dfrac{4-b}{9}$
$\Rightarrow\,\dfrac{1}{3}=\dfrac{4-b}{9}$
$\Rightarrow\,4-b=\dfrac{9}{3}=3$
$\Rightarrow\,-b=3-4$
$\Rightarrow\,b=1$
$\therefore\,b=1$

Find the equations of the two straight lines drawn through the point $(0,a)$ on which the perpendicular let fall from the point $(2a,2a)$ are each of length $a$.
 then equation of the straight line joining the feet of these perpendiculars is $y+2x=5a$

  1. True

  2. False


Correct Option: A

If a pair of perpendicular straight lines drawn through the origin forms an isosceles triangle with the line $2x+3y=6$, then area of the triangle so formed is?

  1. $36/13$

  2. $12/17$

  3. $13/5$

  4. $17/3$


Correct Option: A
Explanation:

As the lines are perpendicular and form an isosceles triangle the other two angles must be $45^\circ$

Let the slope of the line be m
$tan 45^\circ = \Bigg|\cfrac{-\cfrac{2}{3}-m}{1-\cfrac{2m}{3}}\Bigg| = 1$
$m = -5$ and the other line slope =$\cfrac{1}{5}$
Lines 
$y +5x= 0$ and $5y =x$
Intersection points $(0,0)$ , $(-\cfrac{6}{13} , \cfrac{30}{13})$ and $(\cfrac{30}{13} , \cfrac{6}{13})$
Perpendicular distance from origin to line $2x+3y=6$ is $\cfrac{|0+0-6|}{\sqrt{2^2+3^2}} = \cfrac{6}{\sqrt{13}}$
Distance between the points are $\sqrt{\Bigg(\cfrac{36}{13}\Bigg)^2+\Bigg(\cfrac{24}{13}\Bigg)^2} = \cfrac{\sqrt{1872}}{13} = \cfrac{12\sqrt{13}}{13}$
Area = $\cfrac{1}{2} \times \cfrac{12\sqrt{13}}{13} \times \cfrac{6}{\sqrt{13}} = \cfrac{36}{13}$ 

The line $x+3y-2=0$ bisects the angle between a pair of straight lines of which one has equation $x-7y+5=0$. The equation of the other line is-

  1. $3x+3y-1=0$

  2. $x-3y+2=0$

  3. $5x+5y-3=0$

  4. $none$


Correct Option: C
Explanation:
we have
$L _1 =x+3y-2=0---(1)$

$L _2=x-7y+5=0---(2)$

now,

we know that

family of line through the given lines is

$L=L _2+\lambda L _2=0$

$=x-7y+5+\lambda (x+3y-2)=0---(3)$

Distance of any point ray $(2,0)$ on the line $x+3y-2=0$ from the lime 
$x-7y+5=0$ and the line $L=0$ must be same
so,

$\Rightarrow \ \left |\dfrac {2+5}{\sqrt {50}}\right | = \left |\dfrac {2+2\lambda +5-2\lambda}{\sqrt {(1+\lambda)^2+(3\lambda -7)^2}}\right|$

$\Rightarrow \ \dfrac {7}{\sqrt {50}}=\dfrac {7}{\sqrt {(1+\lambda)^2 +(3\lambda -7)^2}}$

$\Rightarrow \ 10\lambda^2-40\lambda =0$

$10\lambda (\lambda -4)=0$

$\lambda =0,\ \lambda =4$

then, put $\lambda =4$ in equation $(3)$ and we get

$L=x-7y+5+4(x+3y-2)=0$

$L=x-7y+5+4x+12y-8=0$

$L=5x+5y-3=0$

Hence this is the answer.


One of the lines of $-3x^{2}+2xy+y^{2}=0$ is parallel to $lx+y+1=0$ then $l=$

  1. $0$

  2. $1$

  3. $2$

  4. $-1$


Correct Option: D
Explanation:

${ y }^{ 2 }+3x-xy-3{ x }^{ 2 }=0\ y(y+3x)-x(y+3x)=0\ (y+3x)(y-x)=0$

lines are $x=y$ and $-3x$
On comparing , we get 
$l=3$ or $l=-1$

If the straight line $2x+3y+1=0$ bisects the  angle between a pair of lines ,one of which in this pair is $3x+2y+4=0$, then the equation of the other line in that pair of line is 

  1. $3x+4y-9=0$

  2. $6x-7y-14=0$

  3. $9x+46y-28=0$

  4. $9x-23y-12=0$


Correct Option: C

If $\theta $ is the parameter,then the family of lines respectedby $\left( {2\cos \theta  + 3\sin \theta } \right)x + \left( {3\cos \theta  - 5\sin \theta } \right)y - \left( {5\cos \theta  - 7\sin \theta } \right) = 0$: are concurrent at the point

  1. $(-1,1)$

  2. $(-1,-1)$

  3. $(1,1)$

  4. $\left( {\frac{4}{{19}},\frac{{29}}{{19}}} \right)$


Correct Option: D

A triangle ${ABC}$ is formed by the lines $2x-3y-6=0$; $3x-y+3=0$ and $3x+4y-12=0$. If the points $P(\alpha,0)$ and $Q(0,\beta)$ always lie on or inside the $\triangle {ABC}$, then

  1. $\alpha \in [-1,2]$ and $\beta\in [-2,3]$

  2. $\alpha \in [-1,3]$ and $\beta\in [-2,4]$

  3. $\alpha \in [-2,4]$ and $\beta\in [-3,4]$

  4. $\alpha \in [-1,3]$ and $\beta\in [-2,3]$


Correct Option: D

The distance the lines 3x +4 y = 9 and 6x +8y = 15 is = 

  1. 3/2

  2. 3/10

  3. 6

  4. None of these


Correct Option: D

In the equation $2x^{2}+2hxy+6y^{2}-4x+5y-6=0$ represent a pair of straight lines then the length of intercept on the $x-$axis cut by the lines is

  1. $2$

  2. $4$

  3. $\sqrt {7}$

  4. $0$


Correct Option: B

The distance between the lines given by $(x+7y)^{2}+4 \sqrt{2}(x+7y)-42=0,$ is

  1. $\displaystyle \frac{4}{5}$

  2. $4\sqrt{2}$

  3. $2$

  4. $10\sqrt{2}$


Correct Option: C
Explanation:

Given equation of pair of straight lines is 

$(x+7y)^{2}+4 \sqrt{2}(x+7y)-42=0$

$\Rightarrow x^{2}+49y^{2}+14xy+4\sqrt{2}x+28\sqrt{2}y-42=0$

Here $a=1, b=49, h=7, g=2\sqrt{2},f=14\sqrt{2},c=-42$
Here $h^{2}=ab$

The given equation represents a pair of parallel lines.

$\displaystyle d=2\sqrt{\frac{g^{2}-ac}{a(a+b)}}$

$\Rightarrow d=2$

If the pair of lines $ax^{2}+2hxy+by^{2}+2gx+2fy+c=0$ intercept on the $x-$axis, then $2fgh=$

  1. $af^{2}+ch^{2}$

  2. $bg^{2}+ch^{2}$

  3. $af^{2}+bg^{2}$

  4. $h^{2}-ab$


Correct Option: A

The product of perpendiculars drawn from the point $(1,2)$ to the pair of lines $x^{2}+4xy+y^{2}=0$ is

  1. $\dfrac {9}{4}$

  2. $\dfrac {3}{4}$

  3. $\dfrac {9}{16}$

  4. $none\ of\ these$


Correct Option: A

If the equation ${ ax }^{ 2 }-6xy+{ y }^{ 2 }+2gx+2fy+c=0$ represents  pair of lines whose slopes are m and ${ m }^{ 2 }$, then sum of all possible values of a is

  1. 17

  2. -|19

  3. 19

  4. -17


Correct Option: A

The angle between the pair of straight lines represented by the equation 
$x^{2}+\lambda xy+2y^{2}+3x-5y+2=0$, is $\tan^{-1}\left(\dfrac{1}{3}\right)$ where $'\lambda'$ is a non-negative real number then $\lambda$ is 

  1. $2$

  2. $0$

  3. $3$

  4. $1$


Correct Option: C
Explanation:

Given equation of pair of straight lines be $x^2+\lambda x{y}+2{y^2}+3{x}-5{y}+2=0$

$\implies a=1,b=2,h=\dfrac{\lambda}{2}$
$\text{tan}^{-1} \bigg(2\dfrac{\sqrt{h^2-a{b}}}{a+b}\bigg)=\text{tan}^{-1}\bigg(\dfrac{1}{3}\bigg)$
$\dfrac{\lambda^2}{4}-2=\dfrac{1}{4}\implies \lambda= 3$

For the pair of lines represented by $ax^{2}+2hxy+by^{2}=0$ to be equally inclined to coordinates axes we have, 

  1. $h^2=ab$

  2. $h+a=0$

  3. $a=0$

  4. $h=0$


Correct Option: D
Explanation:

$ax^{2} + 2hxy + by^{2} = 0$

Let the lines
$b(y - m _{1}x) y - m _{2}x) = ax^{2} + 2hxy + by^{2}$
$m _{1} + m _{2} = \dfrac {-2h}{b}$
and $m _{1}m _{2} = \dfrac {a}{b}$
If $m _{1} = m _{2}$ for equally inclined so
$\dfrac {-2h}{b} = 0\Rightarrow h = 0$.

Consider a general equation of degree $2$, as $\lambda x^{2}-10xy+12y^{2}+5x-16y-3=0$ For the value of $\lambda$ obtained for the given equation to be a pair of straight lines, if $\theta$ is the acute angle between $L _{1}=0$ and $L _{2}=0$ then $\theta$ lies in the interval

  1. $(45^{\circ},60^{\circ})$

  2. $(30^{\circ},45^{\circ})$

  3. $(15^{\circ},30^{\circ})$

  4. $(0^{\circ},15^{\circ})$


Correct Option: D
Explanation:
Given pair of line 
$\lambda x^2-10xy+12y^2+5x-16y-3=0$
on comparing above eq with general form of pair of eq we get
$a=\lambda,h-5,b=12,g=\dfrac{5}{2},f=-8,c=-3$
Given eq is pair of eq so 
$abc+2fgh-af^2-bg^2-ch^2=0$
$\lambda \times 12\times (-3)+2(-8)\left ( \dfrac{5}{2} \right )\left ( -5 \right )-\lambda\times 64-12\left ( \dfrac{25}{4} \right )-(-3)(25)=0$
$-36\lambda +200-64\lambda-75+75=0$
$-100\lambda +200=0$
$\lambda=2$
eq of pair becomes 
$2x^2-10xy+12y^2+5x-16y-3=0$
$2x^2-(10y-5)x+(12y^2-16y-3)=0$
$x=\dfrac{10y-5\pm \sqrt{(10y-5)^2-8(12y^2-16y-3)}}{4}$
$4x=10y-5\pm \sqrt{100y^2+25-100y-96y^2+128y+24)}$
$4x=10y-5\pm \sqrt{4y^2+28y+49)}$
$4x=10y-5\pm \sqrt{(2y+7)^2}$
$4x=10y-5\pm (2y+7)$
$4x=10y-5+ 2y+7$ or $4x=10y-5- (2y+7)$
$4x-12y-2=0$ or $4x-8y+12=0$
$2x-6y-1=0$ or $2x-4y+6=0$
$L _{1} : 2x-6y-1=0$
$L _{2} : 2x-8y-6=0$
Slope of line $L _{1},L _{2}$ $m _{1}=\dfrac{1}{3}$ and  $m _{2}=\dfrac{1}{4}$
$\tan\theta=\left | \dfrac{m _{1}-m _{2}}{1+m _{1}m _{2}} \right |$
$\tan\theta=\left | \dfrac{\dfrac{1}{3}-\dfrac{1}{4}}{1+\dfrac{1}{3}\dfrac{1}{4}} \right |$
$\tan\theta=\dfrac{1}{13}$
$\therefore \theta \epsilon (0^0,15^0)$

By rotating the coordinates axes through $30^{o}$ in anticlockwise sense the equation $x^{2}+2\sqrt{3}xy-y^{2}=2a^{2}$ changes to

  1. $X^{2}-Y^{2}=3a^{2}$

  2. $X^{2}-Y^{2}=a$

  3. $X^{2}-Y^{2}=2a^{2}$

  4. $none of these$


Correct Option: D
Explanation:

$ x=x'\cos  \theta -y'\sin  \theta =x'\left( { \dfrac { { \sqrt { 3 }  } }{ 2 }  } \right) -\frac { { y' } }{ 2 }  \ y=x'\sin  \theta +y'\cos  \theta =x'\left( { \dfrac { 1 }{ 2 }  } \right) +y'\left( { \dfrac { { \sqrt { 3 }  } }{ 2 }  } \right)  \ { x^{ 2 } }+2\sqrt { 3 } xy-{ y^{ 2 } }=2{ a^{ 2 } } \ \dfrac { { { { \left[ { \sqrt { 3 } x'-2y' } \right]  }^{ 2 } } } }{ 4 } -\dfrac { { { { \left[ { x'-\sqrt { 3 } y' } \right]  }^{ 2 } } } }{ 4 } +2\sqrt { 3 } \dfrac { { \left[ { \sqrt { 3 } x'-y' } \right]  } }{ 2 } \dfrac { { { { \left[ { x'-\sqrt { 3 } y' } \right]  }^{ 2 } } } }{ 2 } =2{ a^{ 2 } } \ \dfrac { { 2x{ '^{ 2 } }-2y{ '^{ 2 } } } }{ 4 } -\sqrt { 3 } x'y'+\dfrac { { \sqrt { 3 }  } }{ 2 } \left[ { \sqrt { 3 } x'-y' } \right] \left[ { x'+\sqrt { 3 } y } \right] =2{ a^{ 2 } } \ -\sqrt { 3 } x'y'+\dfrac { { \sqrt { 3 }  } }{ 2 } \left[ { \sqrt { 3 } x{ '^{ 2 } }-\sqrt { 3 } y{ '^{ 2 } }+2x'y' } \right] =2{ a^{ 2 } } \ 2x{ '^{ 2 } }-2y{ '^{ 2 } }=2{ a^{ 2 } } \ x{ '^{ 2 } }-2y{ '^{ 2 } }=2{ a^{ 2 } } $


$ Hence,\, the\, \, option\, \, D\, is\, the\, correct\, answer. $

The equation of pair of lines joining origin to the points of intersection of $x^{2}+y^{2}=9$ and $x+y=3$ is

  1. $x^{2}+(3-x)^{2}=9$

  2. $xy=0$

  3. $(3+y)^{2}+y^{2}=9$

  4. $(x-y)^{2}=9$


Correct Option: A

The equation $x^{3}+y^{3}=0$ represents

  1. three real straight lines

  2. three points

  3. the combined equation of a pair of straight lines

  4. none of these


Correct Option: D
Explanation:

$x^{3}+y^{3}=(x+y)(x^{2}-xy+y^{2})$
$(x^{2}-xy+y^{2})$ does not factorize so this equation is not combined equation of line.

If the pair of lines ${ ax }^{ 2 }+2hxy+{ by }^{ 2 }+2gx+2fy+c=0$ intersect on the y-axis, then

  1. $2fgh={ bg }^{ 2 }+{ ch }^{ 2 }$

  2. ${ bg }^{ 2 }\neq { ch }^{ 2 }$

  3. $abc=2fgh$

  4. $2fgh=af+{ ch }^{ 2 }$


Correct Option: A

The equation ${ x }^{ 2 }{ y }^{ 2 }-2x{ y }^{ 2 }-3{ y }^{ 2 }-4{ x }^{ 2 }y+8xy+12y=0$ represents 

  1. a pair of straight lines

  2. a pair of straight lines and a circle

  3. a pair of straight lines and a parabola

  4. a set of four lines forming a square


Correct Option: D
Explanation:

Given equation is 

${ x }^{ 2 }{ y }^{ 2 }-{ 2xy }^{ 2 }-{ 3y }^{ 2 }-{ 4x }^{ 2 }y+8xy+12y=0$
$\Rightarrow { y }^{ 2 }\left( { x }^{ 2 }-2x-3 \right) -4y\left( { x }^{ 2 }-2x-3 \right) =0$
$\Rightarrow { y }\left( { y }-4 \right) \left( { x }-3 \right) \left( x+1 \right) =0$
$\Rightarrow y=0,y=4,x=3,x=-1$
Hence, the equation represents four straight lines which evidently form a square.

Find the equation of a line which is perpendicular to the line joining $(4,2)$ and $(3,5)$ and cuts off an intercept of length $3$ units on $y$ axis. 

  1. $x-3y+9=0$

  2. $3x-y+6=0$

  3. $x-y+3=0$

  4. None of these


Correct Option: A
Explanation:
Let $(x _1,y _1)=(4,2),(x _2,y _2)=(3,5)$

Slope$(m)=\dfrac{{y} _{2}-{y} _{1}}{{x} _{2}-{x} _{1}}=\dfrac{5-2}{3-1}=-3$

Slope of a line perpendicular to the line $y=mx+c$ is $\dfrac{-1}{m}$ with $y-$intercept $3$ units.

$\therefore$ Slope of a line perpendicular to the line $y=mx+c$ is $\dfrac{-1}{-3}=\dfrac{1}{3}$ with $y-$intercept $c=3$ units.

Thus, the required equation is $y=\dfrac{1}{3}x+3$ or $3y=x+9$ or $x-3y+9=0$

The four sides of a quadrilateral are given by equ. $(xy+12-4x-4y{ ) }^{ 2 }=(2x-2y{ ) }^{ 2 }$. The equation of a line with slope $\sqrt { 3 } $ which divides the area of the quadrilateral in two equal parts is 

  1. $y=\sqrt { 3 } (x+4)$

  2. $y=\sqrt { 3 } x+4$

  3. $y=\sqrt { 3 } (x+4)+4$

  4. $y=\sqrt { 3 } (x-4)$


Correct Option: A

If the equation  $2 x ^ { 2 } + 3 x y + b y ^ { 2 } - 11 x + 13 y + c = 0$  represents two perpendicular straight lines, then

  1. $b = - 2$

  2. $b = 2$

  3. $c = - 2$

  4. $c = 2$


Correct Option: A

The product of the perpendiculars from origin to the pair of lines ${ ax }^{ 2 }+2hxy+{ by }^{ 2 }+2gx+2fy+c=0$ is


  1. $\frac { \left| c \right| }{ \sqrt { \left( { a+b } \right) ^{ 2 } } +{ 4h }^{ 2 } } $

  2. $\frac { \left| c \right| }{ \sqrt { \left( a+b \right) ^{ 2 }-{ 4h }^{ 2 } } } $

  3. $\frac { \left| c \right| }{ \sqrt { \left( a-b \right) ^{ 2 }-{ 4h }^{ 2 } } } $

  4. $\frac { \left| c \right| }{ \sqrt { \left( a-b \right) ^{ 2 }-{ 4h }^{ 2 } } } $


Correct Option: A

If $6x^{2}-5xy+by^{2}+4x+7y+c=0$ represents a pair of perpendicular lines, then :

  1. $b=6,\ c=-2$

  2. $b=-6,\ c=2$

  3. $b=-6,\ c=-2$

  4. $b=-2,\ c=-6$


Correct Option: A

If the lines $ x ^ { 2 } + ( 2 + k ) x y - 4 y ^ { 2 } = 0 $ are equally inclined to the coordinate axes, then  k =

  1. -1

  2. -2

  3. -3

  4. -4


Correct Option: A

If the pair of lines $ax^{2}+2hxy+by^{2}+2gx+2fy+c= 0$ intersect on $y$ axis then

  1. $2fgh= bg^{2}+ch^{2}$

  2. $bg^{2}\neq ch^{2}$

  3. $abc= 2fgh$

  4. None of these


Correct Option: A
Explanation:

As $\displaystyle s=ax^{2}+2hxy +by^{2}+2gx +2fy+c=0 $ represent a pair of line $\displaystyle \therefore \begin{vmatrix}a &h  &g \h  &b  &f \g  &f  &c \end{vmatrix}=0$
or $\displaystyle abc+2fgh-af^{2}-bg^{2}-ch^{2}=0....(1)$ Now say point ofintersection onY axis be $\displaystyle (0,y _{1} $ and  point of intersection of pair of line be obtained by solving the equations $\displaystyle \frac{\partial s}{\partial x}=0=\frac{\partial s}{\partial y}$ $\displaystyle \therefore \frac{\partial s}{\partial x}=0\Rightarrow ax+by+g=0$ $\displaystyle \begin{matrix}\Rightarrow  \ \Rightarrow  \end{matrix} \left{\begin{matrix}hy _{1}+g=0 \by _{1}+f=0 \end{matrix}\right.>  ()$ and $\displaystyle \frac{\partial s}{\partial y}=0\Rightarrow bx+by+f=0$  On compairing the equation given in () we get $\displaystyle bg=fh $ and  $\displaystyle bg^{2}=fgh ....(2) $ Again $\displaystyle ax^{2}+2hxy+by^{2}+2gx+2fy+c=0$ meet at y-axis $\displaystyle \therefore x=0$ $\displaystyle \Rightarrow by^{2}+2fy+c=0$ whose roots must be equal $\displaystyle \Rightarrow by^{2}+2fy+c=0$ whose roots must be equal $\displaystyle \therefore f^{2}=bc af^{2}=abc ......(3)$ Now using (2) and (3) in equation (I) we have $\displaystyle abc+2fgh-af^{2}-bg^{2}-ch^{2}=0$ $\displaystyle \Rightarrow (abc-af^{2})+(fgh-bg^{2})+fgh-ch^{2}=0$ $\displaystyle \Rightarrow 0+0+fgh-ch^{2}=0 \therefore ch^{2}=fgh .....(4) $ Now adding (2) and (4) $\displaystyle 2fgh=ch^{2}+bg^{2}$

A line is at distance of $4$ units from origin and having both intercepts positive. If the perpendicular from the origin to this line makes an angle of ${60}^{o}$ with the line $x+y=0$ Then the equation of the line is

  1. $\left( \sqrt { 3 } +1 \right) x+\left( \sqrt { 3 } +2 \right) y=y=8\sqrt { 2 } $

  2. $\left( \sqrt { 3 } -1 \right) x+\left( \sqrt { 3 } +1 \right) y=y=8\sqrt { 2 } $

  3. $\left( \sqrt { 3 } +1 \right) x-\left( \sqrt { 3 } +1 \right) y=8\sqrt { 2 } $

  4. $\left( \sqrt { 3 } +2 \right) x+\left( \sqrt { 3 } +1 \right) y=8\sqrt { 2 } $


Correct Option: B

If two lines $\dfrac{x-1}{1}=\dfrac{y-2}{k}=\dfrac{z-3}{1}$ and $\dfrac{x}{1}=\dfrac{y}{2}=\dfrac{z}{k}$ intersect, then the value of k is?

  1. $4$

  2. $5$

  3. $3$

  4. $6$


Correct Option: A

If one of the lines given by $6x^{2}-xy+4cy^{2}= 0$ is $3x+4y= 0$, then $c$ equals

  1. 3

  2. -1

  3. 1

  4. -3


Correct Option: D
Explanation:

The equation $\displaystyle ax^{2}+2hxy+by^{2}=0$

$\displaystyle  =(y-m _{1}x)(y-m _{2}x) $

$\displaystyle  \Rightarrow m _{1}+m _{2}=-\frac{2h}{b}=\frac{1}{4c }$.....(1) 

$\displaystyle  \Rightarrow m _{ _1}m _{2} =\frac{3}{2c} $
and $\displaystyle  3x+4y=0\Rightarrow m _{1} =-\dfrac {3}{4}$
 $\displaystyle \therefore m _{2} =-\frac{2}{c} $

 Now by $\displaystyle (1)$ we have $\displaystyle-\left(\frac{3}{4}+\frac{2}{c}\right) =\frac{1}{4c} $

$\displaystyle  \Rightarrow -\frac{3}{4}=\frac{1}{4c}+\frac{2}{c},\frac{3}{4}=\frac{1}{4c}+\frac{8}{4c}$ $\displaystyle  -\frac{3}{4}=\frac{9}{4c}$

$ \therefore c=-3$

If line $2x+7y-1=0$ intersect the lines $L _1=3x+4y+1=0$ and $L _2=6x+8y-3=0$ in $A$ and $B$ respectively, then equation of a line parallel to $L _1$ and $L _2$ and passes through a point $P$ such that $AP : PB=2:1$ (internally) is ($P$ is on the line $2x+7y-1=0$)

  1. $9x+12y+3=0$

  2. $9x+12y-3=0$

  3. $9x+12y-2=0$

  4. $None\ of\ these$


Correct Option: C

If the pair of lines represented by the equation $6x^{2}+17xy+12y^{2}+22x+31y+20=0$ be $2x+3y+p=0$ and $3x+4y+q=0$, then

  1. $p+q=9$

  2. $p^{2}+q^{2}=0$

  3. $3p+2q=22$

  4. $4p+3q=31$


Correct Option: A,C,D
Explanation:

$(2x+3y+p)(3x+4y+q)=0$

$6x^{2}+8xy+2qx+9xy+12y^{2}+3qy+3px+4py+pq=0$

$6x^{2}+17xy+12y^{2}+x(2q+3p)+y(3q+4p)+pq=0$
$\rightarrow 6x^{2}+17xy+12y^{2}+22x+31y+20=0$

Hence comparison gives us
$pq=20$
$3p+2q=22$
$4p+3q=31$
$(4p+3q)-(3p+2q)=31-22$
$p+q=9$.
Therefore
$p^{2}+q^{2}=(p+q)^{2}-2pq$
$=81-2(20)$
$=81-40$
$=41$

$\displaystyle 9x^{2}+2hxy+4y^{2}+6x+2fy-3=0$ represents two parallel lines if

  1. $\displaystyle h=6, f=2 $

  2. $\displaystyle h=-6, f=-2 $

  3. $\displaystyle h=-6, f=2 $

  4. $\displaystyle h=6, f=-2 $


Correct Option: A,B
Explanation:

Since the given equation represents a pair of parallel lines, we have
$\displaystyle h^{2}=9 \times 4\Rightarrow h= \pm 6$
and $\displaystyle \begin{vmatrix}
9 & h & 3\ 
 h& 4 & f\ 
 3& f & -3
\end{vmatrix}=0$
$\displaystyle \Rightarrow 9\left ( -12-f^{2} \right )-h\left ( -3h-3f \right )+3\left ( hf-12 \right )=0$
$\displaystyle \Rightarrow 3h^{2}+6hf-9f^{2}-144=0$
$\displaystyle \Rightarrow 108 \pm 36f-9f^{2}-144=0 \ \ \ \left ( \because h= \pm 6 \right )$
$\displaystyle \Rightarrow 9f^{2} \mp 36f+36=0 \ \ \ \ \  (if \ \  h= \pm 6)$
$\displaystyle \Rightarrow f=2 \ \ \ \ if \ \ \ \ \ ( h=6)$
and $\displaystyle \Rightarrow f=-2 \ \ \ \ \ if \ \ \ \ \ \ (h=-6)$

Joint equation of a pair of lines passing through the point of intersection of the lines $x^{2}+xy-2y^{2}-4x+7y-5=0$ and perpendicular to these lines is

  1. $2x^{2}-xy+y^{2}-4x+7y-5=0$

  2. $4x^{2}-7xy-2y^{2}+6x+15y-18=0$

  3. $2x^{2}+xy-y^{2}+2x+y+5=0$

  4. none of these


Correct Option: D
Explanation:

$x^{ 2 }+xy-2y^{ 2 }-4x+7y-5=0\ \Rightarrow \left( x-y+1 \right) \left( x+2y-5 \right) =0$
Intersection point is $\left( 1,2 \right) $
Equation of line passing through $\left( 1,2 \right) $ and perpendicular to $x-y+1=0$ is
$x+y-3=0$
And equation of line passing through $\left( 1,2 \right) $ and perpendicular to $x+2y-5=0$ is
$2x-y=0$
Hence their joint equation is
$\left( x+y-3 \right) \left( 2x-y \right) =0$

Distance between two lines respresented by the line pair, $x^2 -4xy + 4y^2 + x -2y -6 = 0$ is

  1. $\displaystyle \frac {1}{\sqrt 5}$

  2. $\sqrt 5$

  3. $2\sqrt 5$

  4. none of these


Correct Option: B
Explanation:

As ${ h }^{ 2 }=4=1\times 4=ab$ and $\displaystyle b{ g }^{ 2 }=4\times \left( \frac { 1 }{ 4 }  \right) =1\times \left( 1 \right) =a{ f }^{ 2 }$
Therefore the lines in ${ x }^{ 2 }-4xy+4{ y }^{ 2 }+x-2y-6=0$ are parallel
and the distance between the two lines
$\displaystyle =\frac { 2\sqrt { { g }^{ 2 }-ac }  }{ \sqrt { a\left( a+b \right)  }  } =\frac { 2\sqrt { \dfrac { 1 }{ 4 } -1\times \left( -6 \right)  }  }{ \sqrt { 1\left( 1+4 \right)  }  } =\frac { \sqrt { 25 }  }{ \sqrt { 5 }  } =\sqrt { 5 } $

A line passes through (3, 0) The slope of the line for which its intercept between y = x - 2 and y = -x + 2 subtends a right angle at the origin may be

  1. $\displaystyle \sqrt{2}$

  2. $\displaystyle -\sqrt{2}$

  3. $\displaystyle \frac{1}{\sqrt{3}}$

  4. $\displaystyle -\frac{1}{\sqrt{2}}$


Correct Option: D
Explanation:
Given line 
$y=x-2\Rightarrow x-y-2=0----(1)$
$y=-x+2\Rightarrow x+y-2=0----(2)$
On multiplying eq (1) and (2)
$(x-y-2)(x+y-2)=0$
$x^2+4-4x-y^2=0$
$x^2-y^2-4x+4=0---(3)$
Equation of line from point $(3,0)$ with slope m 
$y=mx-3m$
$1=\dfrac{mx-y}{3m}$
From eq (3)
$x^2-y^2-4x\left ( \dfrac{mx-y}{3m} \right )+4\left ( \dfrac{mx-y}{3m} \right )^2=0$

$x^2-y^2-\left ( \dfrac{4mx^2-4xy}{3m} \right )+4\left ( \dfrac{m^2x^2+y^2-2mxy}{9m^2} \right )=0$

$9m^2x^2-9m^2y^2-12m^2x^2+12mxy+4m^2x^2+4y^2-8mxy=0$

$(m^2)x^2+(-9m^2+4)y^2+4mxy=0$

Since line subtends right angle 
$m^2-9m^2+4=0$
$8m^2=4$
$m^2=\dfrac{1}{2}$
$m=\pm\dfrac{1}{\sqrt{2}}$

The line $\mathrm{l}\mathrm{x}+\mathrm{m}\mathrm{y}+\mathrm{n}=0$ intersects the curve $\mathrm{a}\mathrm{x}^{2}+2\mathrm{h}\mathrm{x}\mathrm{y}+\mathrm{b}\mathrm{y}^{2}=1$ at $\mathrm{P}$ and $\mathrm{Q}$. The circle with $\mathrm{P}\mathrm{Q}$ as diameter passes through the origin then $\displaystyle \frac{l^{2}+m^{2}}{n^{2}}=$

  1. $a + b$

  2. $(\mathrm{a}+\mathrm{b})^{2}$

  3. $\mathrm{a}^{2}+\mathrm{b}^{2}$

  4. $\mathrm{a}^{2}-\mathrm{b}^{2}$


Correct Option: A
Explanation:

$lx+my+x=0$
$\displaystyle y=\frac{-x-lx}{m}$ ---1
$\therefore $$ax^{2}+2hxy+by^{2}=1$
Put $\displaystyle y=\frac{-x-lx}{m}$ in the above equation
$\displaystyle ax^{2}+2hx(\frac{-h-lx}{m})+b(\frac{h+lx}{m})^{2}=1$
$\displaystyle ax^{2}-\frac{2xhx}{m}-\frac{2hlx^{2}}{m}+\frac{bx^{2}}{m^{2}}+\frac{bl^{2}x^{2}}{m^{2}}+\frac{2bxlx}{m}=1$
$\displaystyle (a-\frac{2hl}{m}+\frac{bl^{2}}{m^{2}})x^{2}+(\frac{2bxl}{m}-\frac{2xh}{m})x+\frac{bx^{2}}{m^{2}}-1=0$
$\displaystyle \therefore $$x _{2}+x _{2}=\displaystyle \dfrac{\dfrac{2xh-2bxl}{m}}{a-\dfrac{2hl}{m}+\dfrac{bl^{2}}{m^{2}}}$

Let $P _{1},\ P _{2},\ P _{3}$ be the perpendicular distances between pair of parallel lines represented by $x^{2}-3x-4=0$, $y^{2}-5y+6=0$, $4x^{2}+20xy+25y^{2}=0$ respectively then 

  1. $P _{3} < P _{2} < P _{1}$

  2. $P _{3} < P _{1} < P _{2}$

  3. $P _{2} < P _{1} < P _{3}$

  4. $P _{1} < P _{2} < P _{3}$


Correct Option: A
Explanation:

$x^{2}-3x-4=0$
$(x-4)(x+1)=0$

$x=4$ and $x=-1$
Hence the perpendicular distance between these two lines 
$P _{1}=4-(-1)=5$.

$y^{2}-5y+6=0$
$(y-2)(y-3)=0$
$y=2$ and $y=3$
Hence perpendicular distance between these lines is 
$P _{2}=3-2=1$
Thus $P _{2}<P _{1}$ 

$4x^{2}+20xy+25y^{2}=0$
$x=\dfrac{-20y\pm\sqrt{400y^{2}-400y^{2}}}{8}$

$x=\dfrac{-20y}{8}$
Or 
$8x+20y=0$
$2x+5y=0$
Since we get a single line 
$P _{3}=0$
Therefore 
$P _{3}<P _{2}<P _{1}$

A straight lines moves such that the algebraic sum of the perpendicular drawn to it from two fixed points is equal to 2k than, the straight line always touches a fixed circle of radius.

  1. 2k

  2. $ \frac{k}{2} $

  3. k

  4. None of these


Correct Option: C

Lines $x+y=4$, $3x+y=4$, $x+3y=4$ from a triangle which is

  1. Right-angled

  2. obtuse-angled isosceles

  3. acute-angled isosceles

  4. none


Correct Option: C
Explanation:

Given

$x+y=4$........(1)
$3x+y=4$.......(2)
$x+3y=4$........(3)
solving (1) and (2)
$3x+y=4\ x+y=4\ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ 2x=0$
$\therefore x=0\quad y=4\quad A=(0, 4)$
solving (1) and (3)
$x+3y=4\ x+y=4\ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ 2y=0$
$\therefore y=0\quad x=4\quad B=(4, 0)$
solving (2) and (3)
$3x+y=4\ 3x+9y=12\ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ -8y=-8$
$\therefore y=1\quad x=1\quad C=(1, 1)$
Distance between $A$ & $B$
$=\sqrt{(0-4)^2+(4-0)^2}$
$=\sqrt{4^2+4^2}$
$=\sqrt{32}=4\sqrt 2$
= Distance between $A$ & $C$
$\sqrt{(0-1)^2+(4-1)^2}$
$=\sqrt{1^2+3^2}$
$=\sqrt {10}$
Distance between $B$ & $C$
$\sqrt{(4-1)^2+(0-1)^2}$
$=\sqrt{10}$
As $AC=BC$
So, $\triangle ABC$, is isosceles triangle
using pythagoras theorem,
$AC^2+BC^2<AB^2$
as $10+10=20 < (4\sqrt 2)^2$
$20<32$
So $\triangle ABC$ is acute $\angle$  ed isosceles triangle.

If the pair of lines $a{ x }^{ 2 }+2hxy+b{ y }^{ 2 }+2gx+2fy+c=0$ intersect on the y axis then

  1. $2fgh=b{ g }^{ 2 }+c{ h }^{ 2 }$

  2. $b{ g }^{ 2 }\neq c{ h }^{ 2 }$

  3. $abc=2fgh$

  4. $None\ of\ these$


Correct Option: A
Explanation:

Given pairs of lines

$S=ax^2+2hxy+by^2+2gx+2fy+c=0------(1)$ intersects at y-axis $x=0$ 

Let coordinate of point of intersection is $(0,y)$
To find the point of intersection: 
$\dfrac{d{S}}{d{x}}=0$

$2ax+2hy+2g=0$

Here point of intersection is $(0,y)$ SO above eq passes through $(0,y)$
$0+2hy=-2g$

$y=-\dfrac{g}{h}$
So Intersection point $\left (0,-\dfrac{g}{h} \right)$

Given pair passes through $\left (0,-\dfrac{g}{h} \right)$

$b\left( -\dfrac{g}{h}\right)^2+2f\left ( -\dfrac{g}{h} \right )+c=0$

$bg^2-2fgh+ch^2=0$

$2fgh=bg^2+ch^2$

If the equation of plane containing the line $\displaystyle \frac{-x-1}{3} = \frac{y-1}{2} = \frac{z+1}{-1}$ =1 and passing through the point (1, - 1, 0) is $ax+y+bz+c=0$, then (a+b+c) is equal to

  1. -3

  2. 3

  3. 0

  4. 2


Correct Option: B

Find the equation of the line passing through $(-3,5)$ and perpendicular to the line through the points $(2,5)$ and $(-3,6)$.

  1. $5x-2y+20=0$

  2. $x-5y+20=0$

  3. $5x-y+20=0$

  4. $5x+y+20=0$


Correct Option: C
Explanation:

The slope of the line, whose end points is $\left( {2,5} \right)$ and $\left( { - 3,6} \right)$ is,

$m = \frac{{6 - 5}}{{ - 3 - 2}}$

$ =  - \frac{1}{5}$

The two non-vertical lines are perpendicular to each other if they have the slopes as negative reciprocals of each other.

So, the slope of the line that is perpendicular to the line joining the points $\left( {2,5} \right)$ and $\left( { - 3,6} \right)$ is,

$ =  - \frac{1}{m}$

$ = 5$

The equation of line passing through the point $\left( { - 3,5} \right)$ with slope 5 is,

$\left( {y - 5} \right) = 5\left( {x - \left( { - 3} \right)} \right)$

$y - 5 = 5x + 15$

$5x - y + 20 = 0$

Therefore, the required equation of line is $5x - y + 20 = 0$.


If the distance between the pair of parallel lines ${x}^{2}+2xy+{y}^{2}-8ax-8ay-9{a}^{2}=0$ is $25\sqrt {2}$, then $a$ is

  1. $ \pm4$

  2. $\pm 2$

  3. $\pm 3$

  4. $\pm 5$


Correct Option: D
Explanation:

The equation $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ represents the general equation of pair of lines which are parallel to each other, then the distance between them is given by,


$d = \left|2\sqrt{\dfrac{g^2 - ac}{a(a+b)}} \right|$ (or)  $d = \left|2\sqrt{\dfrac{f^2 - ac}{b(a+b)}} \right|$

Here, the equation is, 
  $x^2 + 2xy + y^2 - 8ax - 8ay - 9a^2 = 0$


i.e., $a = 1, b = 1, c = -9a^2, h = 1, f = -4a, g = -4a $

$\because d = 25\sqrt{2}$
  

$\implies 25\sqrt{2} = \left|2\sqrt{\dfrac{(-4a)^2 - 1(-9a^2)}{1(1+1)}} \right|$

$\implies 25\sqrt{2} = \left|2\sqrt{\dfrac{16a^2 + 9a^2}{2}} \right|$

$\implies 25\sqrt{2} = \sqrt{2} (5a) $

$\therefore a = \pm 5$ (Ans)

If the pair of lines $a{x^2} + 2hxy + b{y^2} + 2gx + 2fy + c = 0$ intersecty on y-axis then

  1. $2fgh = b{g^2} + c{h^2}$

  2. $b{g^2} \ne c{h^2}$

  3. $abc = 2fgh$

  4. none of these


Correct Option: A
Explanation:
Put $x = 0$ in the given equation
$\Rightarrow\,b{y}^{2}+2fy+c=0$.
For unique point of intersection ${f}^{2}−bc=0$
$\Rightarrow\,a{f}^{2}−abc=0$.
Since $abc+2fgh−a{f}^{2}−b{g}^{2}−c{h}^{2}=0$
$\Rightarrow\,2fgh−b{g}^{2}−c{h}^{2}=0$
$\therefore\,2fgh=b{g}^{2}+c{h}^{2}$

The graph $y^2 + 2xy + 40 |x| = 400$ divides the plane into regions. Then the area of bounded region is

  1. $200$ sq. units

  2. $400$ sq. units

  3. $800$ sq. units

  4. $500$ sq. units


Correct Option: C
Explanation:

For $x < 0$, the equation is
$(y - 20) (y+2x + 20) =0$
Hence, the area is $20 \times 40 = 800$ sq. units.
For $x\geq0$ the equation simplifies to  $y^2-400+2xy+40x=(y-20)(y+20)+2x(y+20)=(y+20)(y+2x-20)=0$
Thus, obtained lines make a quadrilateral $ABCD,$
Area of quadrilateral $ABCD =2\times$ Area of triangle $BCD $$=2\times\dfrac{1}{2}\times$ base $\times $height$ = 20\times 40=800$ sq.units

If $P\left( {1 + \frac{t}{{\sqrt 2 }},2 + \frac{t}{{\sqrt 2 }}} \right)$ be any point on a line then the range of value of $t$ for which the point $P$ lies between the parallel lines $x + 2y = 1$ and $2x + 4y = 15$ is

  1. $ - \dfrac{{4\sqrt 2 }}{5} < t < \dfrac{{5\sqrt 2 }}{6}$

  2. $ - \dfrac{{4\sqrt 2 }}{3} < t < \dfrac{{5\sqrt 2 }}{6}$

  3. $t < \dfrac{{ - 4\sqrt 2 }}{3}$

  4. $t < \dfrac{{5\sqrt 2 }}{6}$


Correct Option: B
Explanation:
Given:$P\left(1+\dfrac{t}{\sqrt{2}},2+\dfrac{t}{\sqrt{2}}\right)$ lies on $x+2y=1$
$\Rightarrow\,1+\dfrac{t}{\sqrt{2}}+2\left(2+\dfrac{t}{\sqrt{2}}\right)=1$
$\Rightarrow\,1+\dfrac{t}{\sqrt{2}}+4+\dfrac{2t}{\sqrt{2}}=1$
$\Rightarrow\,\dfrac{3t}{\sqrt{2}}=-4$
$\Rightarrow\,t=\dfrac{-4\sqrt{2}}{3}$
$P\left(1+\dfrac{t}{\sqrt{2}},2+\dfrac{t}{\sqrt{2}}\right)$ lies on $2x+4y=15$
$\Rightarrow\,2\left(1+\dfrac{t}{\sqrt{2}}\right)+4\left(2+\dfrac{t}{\sqrt{2}}\right)=15$
$\Rightarrow\,2+\dfrac{2t}{\sqrt{2}}+8+\dfrac{4t}{\sqrt{2}}=15$
$\Rightarrow\,\dfrac{6t}{\sqrt{2}}=5$
$\Rightarrow\,t=\dfrac{5\sqrt{2}}{6}$
Given:Range of value of $t$ for $t\in\left(\dfrac{-4\sqrt{2}}{3},\dfrac{5\sqrt{2}}{6}\right)$ lies between the parallel lines.
$\therefore\,\dfrac{-4\sqrt{2}}{3}<t<\dfrac{5\sqrt{2}}{6}$

The distance between the two lines represented by the equation $9x^2 - 24 xy + 16y^2 - 12 x + 16y - 12 = 0$ is

  1. $\dfrac{8}{5}$

  2. $\dfrac{6}{5}$

  3. $\dfrac{11}{5}$

  4. None of these


Correct Option: A
Explanation:

The above given equation
$9x^2-24xy+16y^2-12x+16y-12=0$ can be factorized as
$(3x-4y+2)(3x-4y-6)=0$
Since both the lines are parallel the distance between them will be
$d=\left|\dfrac{C _{2}-C _{1}}{\sqrt{3^2+4^2}}\right|$
$=\left|\dfrac{2-(-6)}{5}\right|$
$=\dfrac{8}{5}$

The equation $x^2y^2 - 9y^2- 6x^2 y + 54y = 0$ represents

  1. A pair of straight lines and a circle

  2. A pair of straight lines and a parabola

  3. A set of four straight lines forming a square

  4. None of these


Correct Option: C
Explanation:

$x^2y^2-9y^2-6x^2y+54y=0$
$y^2(x^2-9)-6y(x^2-9)=0$
$(y^2-6y)(x^2-9)=0$
$y(y-6)(x+3)(x-3)=0$
Therefore the lines are
$y=0$
$y=6$
$x=3$
$x=-3$
The above set of lines represent a square of side $6$ units.

The product of the perepndiculars drawn from the point $\left(x _1,y _1\right)$ on the lines $ax^2+2hxy+by^2=0$ is

  1. $\displaystyle \frac { a{ { x } _{ 1 } }^{ 2 }+2h{ x } _{ 1 }{ y } _{ 1 }+b{ { y } _{ 1 } }^{ 2 } }{ \sqrt { { \left( a-b \right)  }^{ 2 }+4{ h }^{ 2 } }  } $

  2. $\displaystyle \frac { \left| a{ { x } _{ 1 } }^{ 2 }+2h{ x } _{ 1 }{ y } _{ 1 }+b{ { y } _{ 1 } }^{ 2 } \right|  }{ \sqrt { { \left( a-b \right)  }^{ 2 }+4{ h }^{ 2 } }  } $

  3. $\displaystyle \frac { a{ { x } _{ 1 } }^{ 2 }-2h{ x } _{ 1 }{ y } _{ 1 }+b{ { y } _{ 1 } }^{ 2 } }{ \sqrt { { \left( a-b \right)  }^{ 2 }+4{ h }^{ 2 } }  } $

  4. $\displaystyle \frac { \left| a{ { x } _{ 1 } }^{ 2 }-2h{ x } _{ 1 }{ y } _{ 1 }+b{ { y } _{ 1 } }^{ 2 } \right|  }{ \sqrt { { \left( a-b \right)  }^{ 2 }+4{ h }^{ 2 } }  } $


Correct Option: B
Explanation:

Let $\displaystyle y={ m } _{ 1 }x$ and $\displaystyle y={ m } _{ 2 }x$ be the two lines given by $\displaystyle{ x }^{ 2 }+2hxy+b{ y }^{ 2 }=0$ so that

$\displaystyle{ m } _{ 1 }+{ m } _{ 2 }=\frac { -2h }{ b } $ and $\displaystyle{ m } _{ 1 }{ m } _{ 2 }=\frac { a }{ b } $   ...(1)
The product of the perpendiculars drawn from $\displaystyle\left( { x } _{ 1, }{ y } _{ 1 } \right) $ on these lines

$\displaystyle=\frac { \left| { y } _{ 1 }-{ m } _{ 1 }{ x } _{ 1 } \right|  }{ \sqrt { 1+{ { m } _{ 1 } }^{ 2 } }  } .\frac { \left| { y } _{ 1 }-{ m } _{ 2 }{ x } _{ 1 } \right|  }{ \sqrt { 1+{ { m } _{ 2 } }^{ 2 } }  } $

$\displaystyle =\frac { { { y } _{ 1 } }^{ 2 }-\left( { m } _{ 1 }+{ m } _{ 2 } \right) { x } _{ 1 }{ y } _{ 1 }+{ m } _{ 1 }{ m } _{ 2 }{ { x }^{ 2 } } _{ 1 } }{ \sqrt { 1+{ { m }^{ 2 } } _{ 1 }+{ { m } _{ 2 } }^{ 2 }+{ { m } _{ 1 } }^{ 2 }{ { m } _{ 2 } }^{ 2 } }  } $

$=$$\displaystyle\dfrac { \left| { { { y } _{ 1 } }^{ 2 }-\left( { m } _{ 1 }+{ m } _{ 2 } \right) { x } _{ 1 }{ y } _{ 1 }+{ m } _{ 1 }{ m } _{ 2 }{ { { { x } _{ 1 } }^{ 2 } } } } \right|  }{ \sqrt { 1+{ \left( { m } _{ 1 }+{ m } _{ 2 } \right)  }^{ 2 }-2{ m } _{ 1 }{ m } _{ 2 }+{ { m } _{ 1 } }^{ 2 }{ { m } _{ 2 } }^{ 2 } }  } $

$\displaystyle=\dfrac { \left| { { y } _{ 1 } }^{ 2 }+\dfrac { 2h{ x } _{ 1 }y _1 }{ b } +\dfrac { a{ { x } _{ 1 } }^{ 2 } }{ b }  \right|  }{ \sqrt { 1+\dfrac { 4{ h }^{ 2 } }{ { b }^{ 2 } } -\dfrac { 2a }{ b } +\dfrac { { a }^{ 2 } }{ { b }^{ 2 } }  }  } $     (using(1) )

$\displaystyle=\frac { \left| { { a }x _{ 1 } }^{ 2 }+2h{ x } _{ 1 }{ y } _{ 1 }+{ { by } _{ 1 } }^{ 2 } \right|  }{ \sqrt { { \left( a-b \right)  }^{ 2 }+4{ h }^{ 2 } }  } $

If the equation of the pair of straight lines passing through the point $(1, 1)$, one making an angle $\theta$ with the positive direction of x-axis and the other making the same angle with the positive direction of y-axis, is $x^2 - (a + 2)xy + y^2 + a(x + y -1) =0,   a  \neq 2$, then the value of sin 2$\theta$ is

  1. $a-2$

  2. $a+2$

  3. $\displaystyle \frac{2}{a+2}$

  4. $\displaystyle \frac{2}{a}$


Correct Option: C
Explanation:

The lines will be
$y-1=\tan A(x-1)$
and $y-1=\cot A(x-1)$
Therefore their joint equation will be
$(y-1-\cot A(x-1))(y-1-\tan A(x-1))=0$
$(y-1)^{2}-(\cot A+ \tan A)(x-1)(y-1)+(x-1)^{2}=0$
$y^2-2y+1-(\cot A+\tan A)(xy-x-y+1)+(x^2-2x+1)=0$
$x^2+y^2-(\cot A+\tan A)(xy)+((\cot A+\tan A)-2)(x+y-1)=0$
Comparing coefficients we get
$\cot A+\tan A=a+2$
$\dfrac {1}{\sin A \cos A}=a+2$

$2\sin A\cos A=\dfrac{2}{a+2}$
$=\sin 2A$
$=\sin 2\theta$

The combined equation of two sides of an equilateral tringle is $x^{2}-3y^{2}-2x+1=0$. If the length of a side of the triangle is $4$ then the equation of the third side is

  1. $x=2\sqrt{3}+1$

  2. $y=2\sqrt{3}+1$

  3. $x+2\sqrt{3}=1$

  4. $x=2\sqrt{3}$


Correct Option: A,C
Explanation:

$x^{2}-3y^{2}-2x+1=0$

$(x-1)^{2}=3y^{2}$

$x-1=\pm\sqrt{3}y$

Hence the equation of the sides are 

$x-\sqrt{3}y=1$ and $x+\sqrt{3}y=1$

They intersect at $(1,0)$. Hence one of the vertex will be $(1,0)$.

Now we can clearly observe that the equation of the third side will be perpendicular to x-axis and parallel to y-axis since

$x-\sqrt{3}y=1$ and $x+\sqrt{3}y=1$ are equally inclined to positive x axis- one in clockwise sense and another in anticlockwise sense, and both have the same x-intercept while equal and opposite y intercept. In other words we can imagine $x-\sqrt{3}y=1$ as the image of the line $x+\sqrt{3}y=1$ with respect to x axis.

Hence the third line will be of the form $x=c$.

Now distance of the vertex $(1,0)$ from the above line will be 

$=asin60^{0}$

$=4sin60^{0}$

$=2\sqrt{3}$.

$=\dfrac{|1-c|}{1}$

Or 

$|1-c|=2\sqrt{3}$

Hence

$c-1=2\sqrt{3}$

$c=2\sqrt{3}+1$ and $c=-2\sqrt{3}+1$

Hence the corresponding equations are 

$x=2\sqrt{3}+1$ and $x+2\sqrt{3}=1$.

If $4xy+2x+2fy+3=0$ represents a pair of lines then $f=$

  1. $2$

  2. $3$

  3. $4$

  4. $5$


Correct Option: B
Explanation:
By factorising,
$4xy+2x+2fy+3=0$
$2x\left(2y+1\right)+3\left(\dfrac{2fy}{3}+1\right)=0$
$\Rightarrow \dfrac{2f}{3}=2$
$\Rightarrow f=3$
$\therefore$ the value of $f=3$

If the two pair of lines $x^2-2mxy-y^2=0$ and $x^2-2nxy-y^2=0$ are such that one of them represents the bisectors of the angles between the other, then 

  1. $mn+1=0$

  2. $mn-1=0$

  3. $1/m+1/n=0$

  4. $1/m -1/n=0$


Correct Option: A

If the equation of the pair of straight lines passing through the point $(1, 1),$ one making an angle $\theta$ with the positive direction of x-axis and the other making the same angle with the positive direction of y-axis is $x^{2}- (a + 2)xy + y^{2} + a(x + y -1) = 0, a \neq -2,$ then the value of $\sin 2\theta $ is

  1. $a -2$

  2. $a + 2$

  3. $\dfrac2{(a + 2)}$

  4. $ \dfrac2a$


Correct Option: C
Explanation:

Equations of the given lines are $y -1 = \tan \theta (x -1) $ and $y -1 =\ cot \theta (x -1)$ 


so their joint equation is 

$[(y-1)-\tan \theta (x -1)][(y -1) -\cot \theta (x-1)] = 0$

$\Rightarrow (y -1)^{2} -(\tan \theta +\cot \theta) (x-l)(y -1) +(x-l)^{2}= 0$

$\Rightarrow x^{2} -(\tan \theta + cot \theta) xy + y^{2} + (\tan \theta+ \cot \theta -2) (x+y -1)=0$

Comparing with the given equation we get $\tan \theta + \cot \theta= a + 2$

$\displaystyle \Rightarrow \frac{1}{\sin \theta \cos\theta }= a + 2 \Rightarrow \sin 2\theta = \frac{2}{a+2}$

The absolute value of difference of the slope of the lines $\displaystyle x^{2}\left ( \sec ^{2}\theta -\sin ^{2}\theta  \right )-2xy\tan \theta +y^{2}\sin ^{2}\theta =0$ is

  1. $-2$

  2. $\dfrac{1}{2}$

  3. $2$

  4. $1$


Correct Option: C
Explanation:
Given pair of lines
$x^2(\sec^2\theta-\sin^2\theta)-2xy\tan\theta+y^2\sin^2\theta=0$

$y^2\sin^2\theta-2xy\tan\theta+x^2(\sec^2\theta-\sin^2\theta)=0$

$y=\dfrac{2x\tan\theta\pm\sqrt{4x^2\tan^2\theta-4\sin^2\theta x^2(\sec^2\theta-\sin^2\theta)}}{2\sin^2\theta}$

$y=\dfrac{2x\tan\theta\pm\sqrt{4x^2\tan^2\theta-4\tan^2\theta x^2+4x^2\sin^4\theta}}{2\sin^2\theta}$

$y=\dfrac{2x\tan\theta\pm\sqrt{4x^2\sin^4\theta}}{2\sin^2\theta}$

$y=\dfrac{2x\tan\theta\pm2x\sin^2\theta}{2\sin^2\theta}$

$y=\dfrac{(\tan\theta\pm\sin^2\theta)}{\sin^2\theta}x$

On comparing above equation with $y=mx+c$ we get
$m=\dfrac{(\tan\theta\pm\sin^2\theta)}{\sin^2\theta}$

Here $m _{1}=\dfrac{(\tan\theta+\sin^2\theta)}{\sin^2\theta}$ and $m _{2}=\dfrac{(\tan\theta-\sin^2\theta)}{\sin^2\theta}$

$m _{1}-m _{2}=\dfrac{(\tan\theta+\sin^2\theta)}{\sin^2\theta}-\dfrac{(\tan\theta-\sin^2\theta)}{\sin^2\theta}$

$\Rightarrow m _{1}-m _{2}=\dfrac{\tan\theta+\sin^2\theta-\tan\theta+\sin^2\theta}{\sin^2\theta}$

$\Rightarrow m _{1}-m _{2}=\dfrac{2\sin^2\theta}{\sin^2\theta}$

$\Rightarrow m _{1}-m _{2}=2$

Two pair of straight lines have the equation $\displaystyle x^{2}+6xy+9y^{2}=0: : and: : ax^{2}+2bxy+cy^{2}=0 $. If one line among them is common, then the value of $9a - 6b + c$ is

  1. $1$

  2. $3$

  3. $0$

  4. $2$


Correct Option: C
Explanation:
Given pairs 
$x^2+6xy+9y^2=0$

$(x+3y)^2=0\Rightarrow x=-3y$

On comparing $3y=-x$ with $y=mx+c$ we get slope 

$m=-\dfrac{1}{3}$
Second pair of line 

$cy^2+2bxy+ax^2=0$

$y=\dfrac{-2bx\pm\sqrt{4b^2x^2-4acx^2}}{2c}$

$y=\dfrac{-2bx\pm2x\sqrt{b^2-ac}}{2c}$


$y=\left (\dfrac{-b\pm \sqrt{b^2-ac}}{c}  \right )x$

On comparing above eq with $y=mx+c$ we get 

$m _{1}=\dfrac{-b+ \sqrt{b^2-ac}}{c}$ and $m _{2}=\dfrac{-b- \sqrt{b^2-ac}}{c}$

Here one line is common in both pairs so slope will be same 

$m _{1}=-\dfrac{1}{3}$

$\dfrac{-b+ \sqrt{b^2-ac}}{c}=-\dfrac{1}{3}$

$-3b+3 \sqrt{b^2-ac}=-c$

$3 \sqrt{b^2-ac}=-c+3b$

On squaring both sides 
$9b^2-9ac=c^2+9b^2-6bc$
$9ac+c^2-6bc=0$
$c(9a-6b+c)=0$
$c=0$ and $9a-6b+c=0$

If the equation $ax^{3}+3bx^{2}y+3cxy^{2}+dy^{3}=0$ $(a, b,c, d\neq 0)$ represents three coincident lines, then 

  1. $a=c$

  2. $b=d$

  3. $\displaystyle {\frac{a}{b}=\frac{b}{c}=\frac{c}{d}}$

  4. $ac=bd$


Correct Option: C
Explanation:

$ax^3+3bx^2y+3cxy^2+dy^3=0$  ---(1)   represent three coincident line

Let $ y=mx$ is that line

$(y-mx)^3=0$

$y^3+3m^2xy-3y^2(mx)-m^3n^3=0$

$m^3x^3+3mny^2-3m^2xy-y^3=0$   ---(2)

Compare 1 & 2,

$\dfrac{a}{m^3}=\dfrac{b}{m}=\dfrac{c}{-m^2}=\dfrac{d}{-1}$

$\therefore \dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}$

lf the equation of the pair of straight lines passing through the point $(1,1 )$ , one making an angle ` $\theta$' with the postive direction of x-axis and the other making the same angle with the positive direction of y-axis is $x^{2}-(a+2)xy+y^{2}+a(x+y-1)=0$, $a\neq-2$, then the value of $\sin 2\theta$ is

  1. $a-2$

  2. $a+2$

  3. $\frac{\displaystyle 2}{\displaystyle a+2}$

  4. $\frac{\displaystyle 2}{\displaystyle a}$


Correct Option: C
Explanation:

Equations of the given lines are 
$y-1=\tan { \theta  } \left( x-1 \right) $ and $y-1=\cot { \theta  } \left( x-1 \right) $
Their combined equation is 
$\left( y-1-\tan { \theta  } \left( x-1 \right)  \right) \left( y-1-\cot { \theta  } \left( x-1 \right)  \right) =0\ \Rightarrow { x }^{ 2 }-\left( \tan { \theta  } +\cot { \theta  }  \right) xy+{ y }^{ 2 }+\left( \tan { \theta  } +\cot { \theta  } -2 \right) \left( x+y-1 \right) =0$
Comparing this with given equation we get
$\tan { \theta  } +\cot { \theta  } =a+2\ \Rightarrow \cfrac { 1 }{ \sin { \theta  } \cos { \theta  }  } =a+2\ \Rightarrow \sin { 2\theta  } =\cfrac { 2 }{ a+2 } $

If $P _{1},\ P _{2},\ P _{3}$ be the product of perpendiculars from $(0,0)$ to $xy+x+y+1=0$, $x^{2}-y^{2}+2x+1=0$, $2x^{2}+3xy-2y^{2}+3x+y+1=0$ respectively then?

  1. $P _{1} < P _{2}< P _{3}$

  2. $P _{3} < P _{2}< P _{1}$

  3. $P _{2} < P _{3}< P _{1}$

  4. $P _{1} < P _{3}< P _{2}$


Correct Option: B
Explanation:
Given 
$xy+x+y+1=0$
comparing above eq with $ax^2+2hxy+by^2+2gx+2fy+c=0$
we get $h=\dfrac{1}{2},g=\dfrac{1}{2},f=\dfrac{1}{2},c=1$
Product of perpendicular from origin is $\left | \dfrac{c}{\sqrt{(a-b)^2+4h^2}} \right |$ 
$P _{1}=\left | \dfrac{1}{\sqrt{4\left ( \dfrac{1}{2} \right )^2}} \right |$
$P _{1}=\dfrac{1}{\sqrt{4\left ( \dfrac{1}{4} \right )}} $
$P _{1}=\dfrac{1}{\sqrt{1}} $
$P _{1}=1$
Now given eq $x^2-y^2+2x+1=0$ 
comparing above eq with $ax^2+2hxy+by^2+2gx+2fy+c=0$
we get $a=1,b=-1,h=0,g=1,f=0,c=1$
Product of perpendicular from origin is $\left | \dfrac{c}{\sqrt{(a-b)^2+4h^2}} \right |$ 
$P _{2}=\left | \dfrac{1}{\sqrt{\left ( 1+1 \right )^2}} \right |$
$P _{2}=\dfrac{1}{\sqrt{4}} $
$P _{2}=\dfrac{1}{2} $

Now given eq $2x^2+3xy-2y^2+3x+y+1=0$ 
comparing above eq with $ax^2+2hxy+by^2+2gx+2fy+c=0$
we get $a=2,b=-2,h=\dfrac{3}{2},g=\dfrac{3}{2},f=\dfrac{1}{2},c=1$
Product of perpendicular from origin is $\left | \dfrac{c}{\sqrt{(a-b)^2+4h^2}} \right |$ 
$P _{3}=\left | \dfrac{1}{\sqrt{\left ( 2+2 \right )^2-4\left ( \dfrac{3}{2} \right )^2}} \right |$
$P _{3}=\left | \dfrac{1}{\sqrt{16-4\left ( \dfrac{9}{4} \right )}} \right |$
$P _{3}=\left | \dfrac{1}{\sqrt{16-9}} \right |$
$P _{3}=\dfrac{1}{\sqrt{7}} $

SO $P _{3}< P _{2}< P _{1}$

Assertion (A): The distance between the lines represented by $x^{2}+2\sqrt{2}xy+2y^{2}+4\sqrt{2}x+4y+1=0$ is 2 
Reason (R): Distance between the lines $ax+by+c=0$ and $ax+by+c _{1}=0$ is $\displaystyle \frac{|c-c _{1}|}{\sqrt{(a^{2}+b^{2})}}$ 

  1. Assertion is true.

  2. Reason is true.

  3. Both Assertion and Reason are true.

  4. Neither Assertion nor Reason are true.


Correct Option: B
Explanation:

Reason is true 
Assertion
$x^{ 2 }+2\sqrt { 2 } xy+2y^{ 2 }+4\sqrt { 2 } x+4y+1=0$ represents a pair of lines when $\Delta =0$
But $\Delta =\begin{vmatrix} 1 & \sqrt { 2 }  & 2\sqrt { 2 }  \ \sqrt { 2 }  & 4 & 1 \ 2\sqrt { 2 }  & 1 & 1 \end{vmatrix}=-2$

lf the expression $3x^{2}+2pxy+2y^{2}+2ax-4y+1$ can be resolved into two linear factors, then $p$ must be a root of the equation

  1. $x^{2}+ax+6=0$

  2. $x^{2}+4ax+6=0$

  3. $x^{2}+4ax+2a^{2}+6=0$

  4. $x^{2}-4ax+6=0$


Correct Option: C
Explanation:

If $3x^{2}+2pxy+2y^{2}+2ax-4y+1=0.$, then.
$\Delta =abc+2fgh-af^{2}-bg^{2}-ch^{2}=0$
$=3(2)(1)+2(-2)(a)(p)-3(-2)^{2}-2(a)^{2}-1(p)^{2}=0$
$6-4ap-12-2a^{2}-p^{2}=0$
$p^{2}+4ap+2a^{2}+6=0$
$\Rightarrow p $ is a solution of $x^{2}+4ax+2a^{2}+6=0$

Let $PQR$ be a right angled isosceles triangle, right angled at $P(2, 1)$. If the equation of the line $QR$ is $2x + y = 3$. Then the equation representing the pair of lines $PQ$ and $PR$ is

  1. $3x^{2} - 3y^{2} + 8xy + 20x + 10y + 25 = 0$

  2. $3x^{2} - 3y^{2} + 8xy - 20x - 10y + 25 = 0$

  3. $3x^{2} - 3y^{2} + 8xy + 10x + 15y + 20 = 0$

  4. $3x^{2} - 3y^{2} - 8xy - 10x - 15y - 20 = 0$


Correct Option: B
Explanation:

The equations of $PQ$ and $PR$ are given by
$y - 1 = \dfrac {-2\mp \tan 45^{\circ}}{1\pm (-2)\tan 45^{\circ}} (x - 2)$


$\Rightarrow y - 1 = \left (\dfrac {-2\mp 1}{1\pm 2}\right ) (x - 2)$

$\Rightarrow y - 1 = -\dfrac {1}{3} (x - 2)$ and $y - 1 = 3(x - 2)$

$\Rightarrow x + 3y = 5$ and $3x - y = 5$
The combined equation of these two lines is
$(x + 3y - 5)(3x - y - 5) = 0$
$\Rightarrow 3x^{2} - 3y^{2} + 8xy - 20x - 10y + 25 = 0$.

Let $\triangle PQR$ be a right angled isosceles triangle, right angled at $P(2, 1)$. If the equation of the side $QR$ is $2x + y = 3$, then the combined equation of sides $PQ$ and $PR$ is

  1. $3x^{2}-8xy+3y^{2}+20x-10y-25=0$

  2. $3x^{2}+8xy-3y^{2}+20x+10y+25=0$

  3. $3x^{2}-8xy+3y^{2}-20x-10y+25=0$

  4. $3x^{2}+8xy-3y^{2}-20x-10y+25=0$


Correct Option: D
Explanation:

Slopes of the line $PQ$ and $PR$ are
$\tan \left(\theta +\dfrac\pi4\right)=\dfrac{1+\tan \theta }{1-\tan \theta }=\dfrac{1-2}{1+2}=-\dfrac{1}{3}$ and $3$
$\therefore $ Equations of $PQ$ and $PR$ are $3y + x - 5 = 0$ and $y-  3x + 5 = 0$
$\therefore $ Combined equation of $PQ$ and $PR$ is
$3x^{2}+8xy-3y^{2}-20x-10y+25=0$

The locus of a point which moves such that the square of its distance from the base of an isosceles triangle is equal to the rectangle under its distances from the other two sides is

  1. Hyperbola

  2. A parabola

  3. An ellipse

  4. A ciircle


Correct Option: A
Explanation:
If the triangle is PQR, with $PQ = PR$, take P, Q, R to be the points $(0,b), (–a,0), (a,0)$ respectively.
The equation of the line PQ is 
$y-b=\dfrac{b}{+a}(x)$
$ay-ab=bx$
$bx-ay+ab=0$
and the equation of PR is
$y-b=\dfrac{b}{-a}(x)$
$-ay+ab=bx$
$bx+ay-ab=0$
and the equation of QR is
$y=\dfrac{0}{2a}(x)$
$y=0$
To find the locus of a point $X(h,k)$ which moves so that the square of its distance from QR is equal to the product of its distances from $PQ$ and $PR$. The distance from $X(h,k)$ to PQ is 

$d _{1}=\left | \dfrac{bh-ak+ab}{\sqrt{a^2+b^2}} \right |$
and the distance from $X(h,k)$ to PR is
$d _{2}=\left | \dfrac{bh+ak-ab}{\sqrt{a^2+b^2}} \right |$
The distance from $X(h,k)$ to QR is $|k|$
So according to question 
The distance of $X$ to QR=product of distances from $X$ to PQ and PR 
$k=d _{1}d _{2}$

$k=\dfrac{bh-(ak-ab)}{\sqrt{a^2+b^2}}\times\dfrac{bh+(ak-ab)}{\sqrt{a^2+b^2}}$

$k=\dfrac{b^2h^2-(a^2k^2+a^2b^2-2a^2kb)}{a^2+b^2}$

$a^2k+b^2k=b^2h^2-a^2k^2-a^2b^2+2a^2bk$
Putting $h=x,k=y$
$b^2x^2+(2a^2+b^2)y^2+2a^2by-a^2b^2=0$
Hence above equation represents the pair of straight lines

If G is the centroid and O is the circumcentre of the triangle with vertices (1, 2, 0), (0, 0, 2) and (2, 1, 1), then equation/s of line OG is/are

  1. x = y = z

  2. y = 1, z = 1

  3. $\frac{x-2}{1}=\frac{y-2}{1}=\frac{z-2}{1}$

  4. $\frac{x-1}{1}=\frac{y-1}{1}=\frac{z-1}{1}$


Correct Option: B
Explanation:

A(1, 2, 0), B (0, 0, 2) and C(2, 1, 1)
$\therefore$ G(1, 1, 1)
$AB^{2} = 1 + 4 + 4 = 9$, $AC^{2} = 1 + 1 + 1 = 3$ and $BC^{2} = 4 + 1 + 1 = 6$
$\therefore$ $AB^{2} =AC^{2} + BC^{2}$
$\therefore$ $\Delta $ ABC is right angled at C
$\therefore$ O is the mid point of AB
$\therefore$ coordinates of O are $\left ( \frac{1}{2},1,1 \right )$
$\therefore$ equation of OG are $\frac{x-1}{\frac{1}{2}}=\frac{y-1}{0}=\frac{z-1}{0}$
$\Rightarrow y=1,z=1$

STATEMENT-1  :There lies exactly $3$ unique points on the curve $8{ x }^{ 3 }+{ y }^{ 3 }+6xy=1$ which  form an equilateral triangle.

STATEMENT-2  :  The curve $8{ x }^{ 3 }+{ y }^{ 3 }+6xy=1$ consists  of  a  straight  line and a point which does not lie on the line.

  1. STATEMENT -1 is True, STATEMENT -2 is True; STATEMENT-2 is a correct explanation for STATEMENT - 1

  2. STATEMENT -1 is True,STATEMENT -2 is True; STATEMENT -2 is NOT a correct explanation for STATEMENT - 1

  3. STATEMENT-1 is True, STATEMENT-2 is False

  4. STATEMENT-1 is False, STATEMENT-2 is True


Correct Option: A
Explanation:

We have, 
$y^3+8x^3 = 1 -6xy $

adding both the sides  $ 6xy^2+12x^2y$,
$y^3 + 6xy^2 + 12 x^2y + 8x^3 = 1 - 6xy +6xy^2 +12x^2y$
$(y+2x)^3 = 1 - 6xy +6xy^2 +12x^2y$
$(y+2x)^3 -1^3 = 6xy(-1+y+2x)$
$(y+2x-1)((y+2x)^2 + (y+2x) +1 ) = 6xy(2x+y-1)$
$(y+2x-1)(y^2+4x^2+4xy + y +2x +1 ) = 6xy(2x+y-1)$
$(y+2x-1)(y^2+4x^2 -2xy +y+2x+1) = 0$
$(y^2+4x^2 -2xy +y+2x+1)=0$
${ y }^{ 2 }+y(1-2x)+4{ x }^{ 2 }+2x+1=0$
$D={ (1-2x) }^{ 2 }-4(4{ x }^{ 2 }+2x+1)=-3{ (2x+1) }^{ 2 }$
For real $y$
$D=0$
and $x=-\dfrac12$ and $y=1$.
So there is only one point which doesn't lie on the straight line.
Hence Assertion and Reason both are correct and reason is correct explanation.

- Hide questions