0

Standard equation of an ellipse - class-XII

Description: standard equation of an ellipse
Number of Questions: 85
Created by:
Tags: maths mathematics and statistics two dimensional analytical geometry-ii circles and conics section conic section conic sections ellipse
Attempted 0/85 Correct 0 Score 0

The equation of the ellipse whose equation of directrix is $3x+4y-5=0$, coordinates of the focus are $(1,2)$ and the eccentricity is $\dfrac{1}{2}$ is $91x^2+84y^2-24xy-170x-360y+475=0$

  1. True

  2. False


Correct Option: A
Explanation:

Let $P(x,y)$ be any point on the ellipse and PM be the perpendicular from P upon the directrix $3x+4y-5=0$.

Then by the definition,
$\dfrac{SP}{PM}=e$

$SP=e.PM$
$\sqrt{(x-1)^2+(y-2)^2}=\dfrac{1}{2}|\dfrac{3x+4y-5}{\sqrt{3^2+4^2}}|$

$(x-1)^2+(y-2)^2=\dfrac{1}{4}. \dfrac{(3x+4y-5)^2}{25}$

$100(x^2+y^2-2x-4y+5)=9x^2+16y^2+24xy-30x-40y+25$
$91x^2+84y^2-24xy-170x-360y+475=0$ is the equation of the ellipse.

The equation of the ellipse whose foci are $(\pm5,0)$ and of the directrix is $5x=36$, is

  1. $\dfrac{x^2}{36}+\dfrac{y^2}{11}=1$

  2. $\dfrac{x^2}{6}+\dfrac{y^2}{\sqrt{11}}=1$

  3. $\dfrac{x^2}{6}+\dfrac{y^2}{11}=1$

  4. None of these


Correct Option: A
Explanation:

Given foci $(\pm 5,0)$ and directrix $x=\cfrac{36}{5}$

Then $ae=5$ (focus coordinates ($\pm ae,0)]$....(1)
$\cfrac{a}{e}=\cfrac{36}{5}$ (directrix equation $x=\cfrac{a}{e}$]....(2)
From (1) and (2) ${a}^{2}=36\Rightarrow$ $a=6$
$e=\cfrac{5}{6}\Rightarrow $ $\sqrt { 1-\cfrac { { b }^{ 2 } }{ { a }^{ 2 } }  } =\cfrac { 5 }{ 6 } $
$1-\cfrac { { b }^{ 2 } }{ 36 } =\cfrac{25}{36}$
$b=\sqrt 11$
required equation $\cfrac{{x}^{2}}{36}+\cfrac{{y}^{2}}{11}=1$

If the eccentricity of the ellipse $\dfrac{x^2}{a^2 + 1} + \dfrac{y^2}{a^2 + 2 } = 1$ is $\dfrac{1}{\sqrt{6}}$, then the length of latusrectum is

  1. $\dfrac{5}{\sqrt{6}}$

  2. $\dfrac{10}{\sqrt{6}}$

  3. $\dfrac{8}{\sqrt{6}}$

  4. None of these


Correct Option: B

If focus of the parabola is $(3,0)$ and length of latus rectum is $8$, then its vertex is

  1. $(2,0)$

  2. $(1,0)$

  3. $(0,0)$

  4. $(-1,0)$


Correct Option: B
Explanation:
Given, focus $=(3,0)$ and Length of latus rectum $= 8$

$\Rightarrow 4a=8$ $\Rightarrow a=2$

$\Rightarrow$ Vertex = $(3-a,0)$ $=(1,0)$

$\therefore $ Option B is correct

If $(0,0)$ be the vertex and $3x-4y+2=0$ be the directrix of a parabola, then the length of its latus rectum is

  1. $4/5$

  2. $2/5$

  3. $8/5$

  4. $1/5$


Correct Option: C
Explanation:
Distance of vertex from directrix = $\dfrac{\left | 3(0)-4(0)+2 \right |}{\sqrt{3^{2}+4^{2}}}= \dfrac{2}{5}=a$

Length of latus rectum = $4a= \dfrac{8}{5}$

$\therefore $ Option C is correct

Eccentricity of an ellipse is $\sqrt {\cfrac{2}{5}} $ and it passes through the point $(-3,1)$ then its equation is 

  1. $3{x^2} + 5{y^2} = 32$

  2. $2{x^2} + 3{y^2} = 33$

  3. $3{x^2} + 4{y^2} = 30$

  4. $2{x^2} + 3{y^2} = 34$


Correct Option: B

If $P = (x, y), F _1 = (3, 0)$ and $16x^2 + 25y^2 = 400$, then $PF _1 + PF _2$ equals

  1. $8$

  2. $6$

  3. $10$

  4. $12$


Correct Option: C
Explanation:
$PF _1+PF _2=2a$

$\dfrac{x^2}{5^2}+\dfrac{y^2}{4^2}=1\Rightarrow a=5,b=4$

$\therefore PF _1+PF _2=2(5)$

$=10$

Which of the following can be the equation of an ellipse?

  1. $x^{2} + y^{2} = 5$

  2. $\dfrac {x^{2}}{9} + \dfrac {x^{2}}{9} = 1$

  3. $2x^{2} + 3y^{2} = 5$

  4. $2x + 2y = 5$


Correct Option: C

The equation $\dfrac {x^{2}}{2-r}+\dfrac {y^{2}}{r-5}+1=0$ represents an ellipse, if

  1. $r > 2$

  2. $2 < r < 5$

  3. $r > 5$

  4. $r \in (2,5)$


Correct Option: B
Explanation:

Given $\dfrac{x^2}{2-r}+\dfrac{y^2}{r-5}+1=0$ represents a ellipse

$\implies \dfrac{x^2}{2-r}+\dfrac{y^2}{r-5}=-1$
$\implies \dfrac{x^2}{r-2}+\dfrac{y^2}{5-r}=1$
Since this equation is an ellipse so $r-2>0,5-r>0\implies 2<r<5$

The locus of center of a variable circle touching the circle of radius ${ r } _{ 1 }and{ r } _{ 2 }$ extemally which also touch each other externally , is a conic of the eccentricity $e$.If $\dfrac { { r } _{ 1 } }{ { r } _{ 2 } } =3+2\sqrt { 2 } $ then ${ e }^{ 2 }$ is 

  1. 2

  2. 3

  3. 4

  4. 5


Correct Option: A

The arrangement of the following conics in the descending order of their lengths of semi latus rectum is
A) $ 6= r (1 + 3\cos \theta )$
B) $10= r (1 + 3\cos \theta )$
C) $8= r (1 + 3\cos \theta )$
D) $12= r (1 + 3\cos \theta )$

  1. $D, A, B, C$

  2. $B, C, D, A$

  3. $D, B, C, A$

  4. $A, C, B, D$


Correct Option: C
Explanation:

Comparing given equation with standard equation $r(1+e\cos\theta)=l$ where $l$ is semi latus rectum
Hence order is $D,B,C,A$

The focal chord of a conic perpendicular to axis is 

  1. Tangent

  2. Vertex

  3. Focal distance

  4. Latus rectum


Correct Option: D
Explanation:

A perpendicular from a point on the conic to the axis is called an ordinate, and if produced to meet the conic again it is called a double ordinate. The double ordinate through the focus is called the $latus\ rectum$.

The locus of a planet orbiting around the sun is: 

  1. A circle

  2. A straight line

  3. A semicircle

  4. An ellipse


Correct Option: D
Explanation:

It is a fact & proof of it can be seen from higher education physics books

The sum of the focal distances of a point on the ellipse $\cfrac { { x }^{ 2 } }{ 4 } +\cfrac { { y }^{ 2 } }{ 9 } =1$ is:

  1. $4$ units

  2. $6$ units

  3. $8$ units

  4. $10$ units


Correct Option: B
Explanation:

The sum of focal distances from a point of ellipse is 2 times the major axis.
For the given ellipse , length of semi major axis i.e. $b$ is $3$.
So required length $=2\times 3=6$
Option B is true

Equation of the ellipse in its standard form is $\displaystyle \frac{x^2}{a^2}-\frac{y^2}{b^2}=1$

  1. True

  2. False

  3. Nither

  4. Either


Correct Option: B
Explanation:

Equation of ellipse in standard form is 

              $\dfrac { { x }^{ 2 } }{ a^{ 2 } } +\dfrac { { y }^{ 2 } }{ { b }^{ 2 } } =1$
False

The focus of extremities of the latus rectum of the family of the ellipse  ${b^2}{x^2} + {a^2}{y^2} = {a^2}{b^2}{\text{ is }}\left( {b \in R} \right)$ 

  1. ${x^2} - ay = {a^3}$

  2. ${x^2} - ay - {e^2}$

  3. ${x^2} \pm ay = {a^2}$

  4. ${x^2} + ay - {b^2}$


Correct Option: A

The equation of the latusrecta of the ellipse $9x^{2}+4^{2}-18x-8y-23=0$ are 

  1. $y=\pm \sqrt {5}$

  2. $x=\pm \sqrt {5}$

  3. $y=1 \pm \sqrt {5}$

  4. $x=1 \pm \sqrt {5}$


Correct Option: C
Explanation:

equation of ellipse is ${ 9x }^{ 2 }+{ 4y }^{ 2 }-18x-8y-23=0$

$\Rightarrow (9x^{ 2 }-18x+9)+(4y^{ 2 }-8y+4)-23-9-4=0$
$ \Rightarrow 9(x-1)^{ 2 }+4(y-1)^{ 2 }=36$
$ \Rightarrow \cfrac { (x-1)^{ 2 } }{ 4 } +\cfrac { (y-1)^{ 2 } }{ 9 } =1$
So, equation of latus recta is $(y-1)=\pm be$
$y=1\pm \sqrt { b^{ 2 }-a^{ 2 } } \Rightarrow y=1\pm \sqrt { 5 } $

The foci of the ellipse $\dfrac{x^{2}}{16} + \dfrac{y^{2}}{b^{2}} =1$ and the hyperbola $\dfrac{x^{2}}{144} - \dfrac{y^{2}}{81} =\dfrac{1}{25}$ coincide, then the value of $b^{2}$ is:

  1. $5$

  2. $7$

  3. $9$

  4. $4$


Correct Option: B
Explanation:

The foci of the ellipse are also the foci of an hyperbola,
then we have, for the ellipse,

$a^2 -c^2 = b^2$
so
$16 -c^2 = b^2...............(1) $
 
Equation of Hyperbola can also be written as $\dfrac{x^2}{\dfrac{144}{25}}-\dfrac{y^2}{\dfrac{81}{25}}=1$

For the hyperbola, which must have its transverse axis on the x-axis, the equation
$c^2 - a^2 = b^2\Rightarrow c^2-\dfrac{144}{25}=\dfrac{81}{25}\Rightarrow c^2=\dfrac{225}{25}=9$

Putting this value in equation (1)
$16-9=b^2\Rightarrow b^2=7$

If foci are points $(0,1)(0,-1)$ and minor axis is of length $1$, then equation of ellipse is

  1. $\dfrac { { x }^{ 2 } }{ 1/4 } +\dfrac { { y }^{ 2 } }{ 5/4 } =1$

  2. $\dfrac { { x }^{ 2 } }{ 5/4 } +\dfrac { { y }^{ 2 } }{ 1/4 } =1$

  3. $\dfrac { { x }^{ 2 } }{ 3/4 } +\dfrac { { y }^{ 2 } }{ 1/4 } =1$

  4. $\dfrac { { x }^{ 2 } }{ 1/4 } +\dfrac { { y }^{ 2 } }{ 3/4 } =1$


Correct Option: A
Explanation:

Given that focii are $(0,1), (0,-1)$


Axis lies along $y-axis$

Distance between focii$\rightarrow 2be=2$

$\Rightarrow be=1$

Given that $2a=1$

$\Rightarrow a=\dfrac{1}{2}$

We know that $\Rightarrow e^2=1-\dfrac{a^2}{b^2}$

$\Rightarrow b^2e^2=b^2-a^2$

Substituting above obtained values in this expression we get,

$\Rightarrow 1=b^2-(\dfrac{1}{2})^2$

$\Rightarrow 1=b^2-\dfrac{1}{4}$

$\Rightarrow b^2=\dfrac{5}{4}$

Thus equation of ellipse$\Rightarrow \dfrac{x^2}{\dfrac{1}{4}}+\dfrac{y^2}{\dfrac{5}{4}}=1$

The equation of the ellipse with its focus at $(6, 2)$, centre at $(1, 2)$ and which passes through the point $(4, 6)$ is?

  1. $\dfrac{(x-1)^2}{25}+\dfrac{(y-2)^2}{16}=1$

  2. $\dfrac{(x-1)^2}{25}+\dfrac{(y-2)^2}{20}=1$

  3. $\dfrac{(x-1)^2}{45}+\dfrac{(y-2)^2}{20}=1$

  4. $\dfrac{(x-1)^2}{45}+\dfrac{(y-2)^2}{16}=1$


Correct Option: C

The equation of the tangent to the ellipse such that sum of perpendiculars dropped from foci is 2 units, is

  1. $y cos3\pi/ 4 - x sin 3\pi /4=1$

  2. $y sin \frac{3\pi}{8}- x cos \frac{3\pi}{8}=1$

  3. $x cos \pi /8 - sin \pi /8=1$

  4. $y cos \frac{5\pi}{8}+x sin \frac{5\pi}{8}=1$


Correct Option: A

An ellipse $\cfrac { { x }^{ z } }{ 4 } +\cfrac { { y }^{ z } }{ 3 } =1$ confocal with hyperbola $\cfrac { { x }^{ 2 } }{ \cos ^{ 2 }{ \theta  }  } -\cfrac { { y }^{ 2 } }{ \sin ^{ 2 }{ \theta  }  } =1$ then the set of value of $'0'$

  1. $R$

  2. $R-\left{ n\pi ,n\epsilon z \right} $

  3. $R-\left{ \left( 2n+1 \right) \cfrac { \pi }{ 2 } ,n\epsilon z \right} $

  4. $R-\left{ \cfrac { n\pi }{ 2 } ,n\epsilon z \right} $


Correct Option: A
Explanation:
Focus of ellipse$=ae=a\sqrt { 1-\cfrac { { b }^{ 2 } }{ { a }^{ 2 } }  } $
$=\sqrt { { a }^{ 2 }-{ b }^{ 2 } } $
$=\sqrt { 1 } $
$=1$
Focus of hyperbola$=a\sqrt { 1+\cfrac { { b }^{ 2 } }{ { a }^{ 2 } }  } $
$=\sqrt { { a }^{ 2 }+{ b }^{ 2 } } $
$=\sqrt { \sin ^{ 2 }{ \theta  } +\cos ^{ 2 }{ \theta  }  } $
$=\sqrt { 1 } $
$=1$
$\therefore $The ellipse and hyperbola will be confocal for $\theta \epsilon R$.

Equation of the ellipse whose axes are the axes of coordinates and which passes through the point $ (-3,1)$ and has eccentricity $\sqrt {\frac{2}{5}} $ is 

  1. $5x^3+3y^2-48=0$

  2. $3x^2+5y^2-15=0$

  3. $5x^2+3y^2-32=0$

  4. $3x^2+5y^2-32=0$


Correct Option: C
Explanation:

We know that equation of ellipse is

 

  $ \dfrac{{{x}^{2}}}{{{a}^{2}}}+\dfrac{{{y}^{2}}}{{{b}^{2}}}=1 $       …….(1)

Given that

  $ e=\sqrt{\dfrac{2}{5}} $

 $ \sqrt{\dfrac{{{a}^{2}}-{{b}^{2}}}{{{a}^{2}}}}=\sqrt{\dfrac{2}{5}} $

 

Taking square both side and solving , we get


  $ 5{{a}^{2}}-5{{b}^{2}}=2{{a}^{2}} $

 $ {{a}^{2}}=\dfrac{5{{b}^{2}}}{3} $    …….(2)

$\because $ ellipse pass through (-3,1)

Then $x=-3, y=1$

Put in equation (1) we get

  $ \dfrac{{{\left( -3 \right)}^{2}}}{{{a}^{2}}}+\dfrac{{{1}^{2}}}{{{b}^{2}}}=1 $

 $ {{a}^{2}}+9{{b}^{2}}={{a}^{2}}{{b}^{2}} $

 $ \dfrac{5{{b}^{2}}}{3}+9{{b}^{2}}=\dfrac{5{{b}^{2}}}{3}.{{b}^{2}} $

 $ {{b}^{2}}=\dfrac{32}{5} $    (From equation (1) and (2)  )

Put in equation (2) , we get ${{a}^{2}}=\dfrac{32}{3}$

the value of a and b put in equation (1), we get


  $ \dfrac{{{x}^{2}}}{\dfrac{32}{3}}+\dfrac{{{y}^{2}}}{\dfrac{32}{5}}=1 $

 $ 3{{x}^{2}}+5{{y}^{2}}=32 $

This is required equation

S and S' foci of an ellipse. B is one end of the minor axis. If $\angle{SBS'}$ is a right angled isosceles triangle, then e$=?$

  1. $\dfrac{1}{\sqrt{2}}$

  2. $\dfrac{1}{2}$

  3. $\dfrac{\sqrt{3}}{2}$

  4. $\dfrac{3}{4}$


Correct Option: A
Explanation:
We have
$S=(ae,0)\quad S'(-ae,0)and B=(0,b)$
Since it is given that $\angle SBS'=90^o$
Slope of SB$\times$ Slope of S'B$=-1$
$\left(\dfrac{b-0}{0-ae}\right)\times\left(\dfrac{b-0}{b+ae}\right)=-1$
$\left(\dfrac{-b}{ae}\right)\left(\dfrac{b}{ae}\right)=-1$
$b^2=a^2e^2$
But, $b^2=a^2(1-e^2)$
So,
$a^2(1-e^2)=a^2e^2$
$1-e^2=e^2$
$2e^2=1$
$e^2=\dfrac{1}{2}$
$e=\dfrac{1}{\sqrt2}$

The eccentricity of an ellipse is $\dfrac {\sqrt {3}}{2}$ its length of latus reetum is

  1. $\dfrac {1}{2}$ (length of major axis)

  2. $\dfrac {1}{3}$ (length of major axis)

  3. $\dfrac {1}{4}$ (length of major axis)

  4. $\dfrac {2}{3}$ (length of major axis)


Correct Option: C

The length of latus rectum of $\dfrac {x^2}9+\dfrac {y^2}2=1$ is 

  1. $\dfrac 74$

  2. $\dfrac 34$

  3. $\dfrac 43$

  4. None.


Correct Option: C
Explanation:

The length of latus Rectum of $\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1$

is $\dfrac{2b^2}{a}$

Here $a=3\quad b=\sqrt 2$

$\Rightarrow \dfrac{2b^2}{a}=\dfrac{2(\sqrt 2)^2}{3}=\dfrac{2(2)}{3}=\dfrac 43$

An ellipse of semi-axis $a,b,$ slides between two perpendicular lines, then the locus of its foci is, (the two lines being taken  as the axes of coordinates)

  1. $(x^{2}+y^{2})(x^{2}y^{2}+b^{2})=4a^{2}x^{2}y^{2}$

  2. $(x^{2}+y^{2})(x^{2}y^{2}+b^{2})=4b^{2}x^{2}y^{2}$

  3. $(x^{2}-y^{2})(x^{2}y^{2}+b^{2})=4b^{2}x^{2}y^{2}$

  4. $(x^{2}-y^{2})(x^{2}y^{2}+b^{2})=4a^{2}x^{2}y^{2}$


Correct Option: A

If equation $(5x-1)^{2}+(5y-2)^{2}=(\lambda^{2}-2\lambda+1)(3x+4y-1)^{2}$ represents an ellipse, then $\lambda \in$

  1. $(0, 1)$

  2. $(0, 2)$

  3. $(1, 2)$

  4. $(0, 1)\cup (1, 2)$


Correct Option: B

The number of parabolas that can be drawn if two ends of the latus rectum are given 

  1. 1

  2. 2

  3. 4

  4. 3


Correct Option: B

The equation $\dfrac{{x}^{2}}{2-r}+\dfrac{{y}^{2}}{r-5}+1=0$ represents an ellipse if

  1. $r>1$

  2. $r>5$

  3. $2 < r< 5$

  4. $r<2$ or $r>5$


Correct Option: C

The locus of the mid points of the portion of the tangents to the ellipse intercepted between the axes

  1. $\dfrac{x^{2}}{a^{2}}+\dfrac{y^{2}}{b^{2}}=4$

  2. $\dfrac{a^{2}}{x^{2}}+\frac{b^{2}}{y^{2}}=4$

  3. $\dfrac{x^{2}}{a^{2}}-\dfrac{y^{2}}{b^{2}}=4$

  4. none of these


Correct Option: A

Eccentricity of ellipse $\frac{{{x^2}}}{{{a^2} + 1}} + \frac{{{y^2}}}{{{a^2} + 2}} = 1$ is $\frac{1}{{\sqrt 3 }}$  then length of Latusrectum is 

  1. $\frac{8}{{\sqrt 3 }}$

  2. $\frac{4}{{\sqrt 3 }}$

  3. $2\sqrt 3 $

  4. $\frac{{\sqrt 3 }}{2}$


Correct Option: A
Explanation:

$\cfrac{x^2}{a^2+1}+\cfrac{y^2}{a^2+2}=1$

Eccentricity of ellipse $=\cfrac{1}{\sqrt 3}$
So, $\cfrac{\sqrt{b^2-a^2}}{a}=\cfrac{1}{\sqrt 3}$
Where ellipse 
$\cfrac{x^2}{a^2+1}+\cfrac{y^2}{a^2+2}=1$
So, here
$\cfrac{\sqrt{a^2+2a^2-1}}{a}=\cfrac{1}{\sqrt 3}$
$\implies a^2=2$
So, equation is 
$\cfrac{x^2}{3}+\cfrac{y^2}{4}=1$
Latus rectum $=\cfrac{2b^2}{a}=\cfrac{2\times 4}{\sqrt 3}=\cfrac{8}{\sqrt 3}$

The equation $\dfrac { x ^ { 2 } } { 10 - a } + \dfrac { y ^ { 2 } } { 4 - a } = 1$ represents an ellipse if

  1. $a < 4$

  2. $a > 4$

  3. $4 < a < 10$

  4. None of these


Correct Option: D
Explanation:

$\dfrac{x^2}{10-a}+\dfrac{y^2}{4-a}=1$

For this equation to represent an ellipse its eccentricity shoule lie between $0$ and $1$.
$\sqrt{1-\dfrac{b^2}{a^2}}< 1$
$0< 1-\dfrac{(4-a)^2}{(10-a)^2} <1$
$0 < (10-a)^2-(4-a)^2 <1$
$0< 84-12a <1$
$0< (7-a)12<1$
$12(7-a)> 0$ and
$12(7-a)<1$
$a< 7$ and $7-a<\dfrac{1}{12}$
$a< 7$ and $a >\dfrac{83}{12}$

If the latus rectum of an ellipse $x ^ { 2 } \tan ^ { 2 } \varphi + y ^ { 2 } \sec ^ { 2 } \varphi =$ $1$ is $1 / 2 $ then $\varphi $ is

  1. $\pi / 2$

  2. $\pi / 6$

  3. $\pi / 3$

  4. $5$ $\pi/ 12$


Correct Option: D
Explanation:

Given $x^2 tan^2 \phi + y^2 \, sec^2 \phi = 1$

$\rightarrow \dfrac{x^2}{(1/tan^2 \phi)} + \dfrac{y^2}{(1/sec^2 \phi)} = 1$
$a = \pm \dfrac{1}{tan \phi} , b = \pm \dfrac{1}{sec \phi}$
and $\rightarrow e^2 = 1 - \dfrac{b^2}{a^2}$
$\rightarrow e^2 = 1 - \dfrac{1/sec^2 \phi}{1/tan^2 \phi} = 1 - \dfrac{tan^2 \phi}{sec^2 \phi}$
$\rightarrow e^2 = 1 - sin^2 \phi = cos^2 \phi$
length of latus rectum 
$(LL') = \dfrac{2 b^2}{a} = 2a (1 - e^2)$
$\rightarrow 2a (1 - cos^2 \phi) = 2a. sin^2 \phi = \dfrac{1}{2} $ (Given)
$\therefore 2. \dfrac{cos \phi}{sin \phi} sin^2 \phi = \dfrac{1}{2}$
$\rightarrow 2 cos \phi \, sin \phi = \dfrac{1}{2}$
$\rightarrow sin^2 \phi = \dfrac{1}{2} $
$\rightarrow 2 \phi = \dfrac{\pi}{6} , \dfrac{5 \pi}{6}$
$\therefore \phi = \dfrac{\pi}{12}$    or 
$\phi = \dfrac{ 5 \pi}{12}$

vertices of an ellipse are $(0,\pm 10)$ and its eccentricity $e=4/5$ then its equation is 

  1. $90x^2-40y^2=3600$

  2. $80x^2+50y^2=4000$

  3. $36x^2+100y^2=3600$

  4. $100x^2+36y^2=3600$


Correct Option: D
Explanation:

Let the equation of the required ellipse be 

$\dfrac { { x }^{ 2 } }{ { a }^{ 2 } } +\dfrac { { y }^{ 2 } }{ { b }^{ 2 } } =1\longrightarrow \left( 1 \right) $
since the vertices of the ellipse are on $y$-axis, so the coordinate of the vertices are $\left( 0,\pm b \right) $
$\therefore b=10\ Now,\quad { a }^{ 2 }=b^{ 2 }\left( 1-{ e }^{ 2 } \right) \ \Rightarrow { a }^{ 2 }=100\left( 1-\dfrac { 16 }{ 25 }  \right) \ \Rightarrow { a }^{ 2 }=36\ $
substituting the value of ${ a }^{ 2 }$ and ${ b }^{ 2 }$ in equation $(1)$
we get, $\dfrac { { x }^{ 2 } }{ 36 } +\dfrac { { y }^{ 2 } }{ 100 } =1\ \Rightarrow 100{ x }^{ 2 }+36{ y }^{ 2 }=3600\ \Rightarrow 100{ x }^{ 2 }+36{ y }^{ 2 }-3600=0$

The equation of the latus rectum of the ellipse $9{x}^{2}+4{y}^{2}-18x-8y-23=0$ are

  1. $y=\pm \sqrt{5}$

  2. $y=- \sqrt{5}$

  3. $y=1\pm \sqrt{5}$

  4. $y=-1\pm \sqrt{5}$


Correct Option: C
Explanation:
$9x^2+4y^2-18x-8y-23=0$
$=(3x-3)^2+(2y-2)^2-13-23=0$
$\Rightarrow \ 9(x-1)^2+4(y-1)^2=36$
$\Rightarrow \ \dfrac {(x-1)^2}{4}+\dfrac {(y-1)^2}{9}=1$
Shifting origin to $(1,1)\Rightarrow x-1=x,\ y-1=y$
$\Rightarrow \ \dfrac {x^2}{4}+\dfrac {y^2}{9}=1$
$a=2,= b=3,\ e^2=1+\dfrac {a^2}{b^2}=1+\dfrac {4}{9}=\dfrac {5}{9}$
$\Rightarrow \ e=\pm \sqrt {\dfrac {5}{9}}+\dfrac {\sqrt 5}{3}$
$\Rightarrow \ $ Focus $=(0,\ \pm be)=(0,\ \pm \sqrt 5)$
$\Rightarrow \ $ latus ractum $\Rightarrow \ y=\pm \sqrt {5}$
Shifting back, $y=y-1$
$\Rightarrow \ y-1=\pm \sqrt {5}$
$\Rightarrow \ y=1\pm \sqrt 5\  \Rightarrow \ (C) $


If there is exactly one tangent at a distance of $4$ units from one of the locus of $\dfrac{x^{2}}{a^{2}}+\dfrac{y^{2}}{a^{2}-16}=1, a>4$, then length of latus rectum is :-

  1. $16$

  2. $\dfrac{8}{3}$

  3. $12$

  4. $15$


Correct Option: A

The equation $\dfrac{x^2}{2-r}+\dfrac{y^2}{r-5}+1=0$ represents an ellipse, if

  1. $r>2$

  2. $r\in \left(2,:\dfrac{7}{2}\right)\cup \left(\dfrac{7}{2},5\right)$

  3. $r>5$

  4. $r<2$


Correct Option: A
Explanation:
Equating the equation of the ellipse with the second-degree equation
$A{x}^{2}+Bxy+C{y}^{2}+Dx+Ey+F=0$ with $\dfrac{{x}^{2}}{2-r}+\dfrac{{y}^{2}}{r-5}+1=0$
we get $A=\dfrac{1}{2-r}, B=0, C=\dfrac{1}{r-5},D=0,E=0$ and $F=1$
For the second degree equation to represent an ellipse, the coefficients must satisfy the discriminant condition ${B}^{2}-4AC<0$ and also $A\neq C$
$\Rightarrow {\left(0\right)}^{2}-4\left(\dfrac{1}{2-r}\right)\left(\dfrac{1}{r-5}\right)<0$
$\Rightarrow -4\left(\dfrac{1}{2-r}\right)\left(\dfrac{1}{r-5}\right)<0$
$\Rightarrow \left(\dfrac{1}{2-r}\right)\left(\dfrac{1}{r-5}\right)>0$
$\Rightarrow \left(2-r\right)\left(r-5\right)<0$
$\Rightarrow \left(r-2\right)\left(r-5\right)>0$
$\Rightarrow r>2$

Distance between the foci of the curve represented by the equation $x=3+4\cos\theta, y=2+3\sin\theta$, is?

  1. $3\sqrt{7}$

  2. $2\sqrt{7}$

  3. $\sqrt{7}$

  4. $\dfrac{\sqrt{7}}{2}$


Correct Option: A

Equation of the ellipse whose minor axis is equal to the distance between foci and whose latus rectum is $10 ,$ is given by ____________.

  1. $2 x ^ { 2 } + 3 y ^ { 2 } = 100$

  2. $2 x ^ { 2 } + 3 y ^ { 2 } = 80$

  3. $x ^ { 2 } + 2 y ^ { 2 } = 100$

  4. none of these


Correct Option: C

For the ellipse $ {12x}^{2} +{4y}^{2} +24x-16y+25=0 $

  1. centre is $(-1,2) $

  2. Length of axes are $ {\sqrt {3}} and 1 $

  3. eceentricity is $ \sqrt {\cfrac {2} {3}} $

  4. All of these


Correct Option: B
Explanation:
Given,

$12x^2+4y^2+24x-16y+25=0$

$\Rightarrow 12(x+1)^2+4(y-2)^2=3$

$\dfrac{(x+1)^2}{\frac{1}{4}}+\dfrac{(y-2)^2}{\frac{3}{4}}=1$

$\therefore a=\dfrac{1}{2},b=\dfrac{\sqrt 3}{2}$

⇒ Centre $ = (-1, 2)$

Here $b^2>a^2$

⇒ eccentricity$(e) = \sqrt {\dfrac {b^2-a^2}{b^2}} $

$= \sqrt {\dfrac {\dfrac 3 4 - \dfrac 1 4}{\dfrac 3 4}}=\sqrt{\dfrac 2 3}$

Length of arcs,

length of major arc $=2b=2\left ( \dfrac{\sqrt 3}{2} \right )=\sqrt 3$

length of minor arc $=2a=2\left ( \dfrac{1}{2} \right )=1$

Option D is correct.

A point $P$ on the ellipse $\displaystyle \frac{x^{2}}{25} + \frac{y^{2}}{9} = 1$ has the eccentric angle $\displaystyle \frac{\pi}{8}$. The sum of the distance of $P$ from the two foci is

  1. $5$

  2. $6$

  3. $10$

  4. $3$


Correct Option: C
Explanation:

Given,ellipse equation as $\dfrac{x^2}{25}+\dfrac{y^2}{9}=1$
Length of major axis, $a=5$ and length of minor axis, $b=3$
$P$ is a point on the ellipse whose eccentricity is $\dfrac{\pi}{8}.$
We know that, sum of the distances of any point on the ellipse from its foci equal to twice the major axis.
Let $S,S'$ be foci of ellipse and $a,b$ as the length of major,minor axis respectively.
$\Rightarrow SP+S'P=2a$
$\Rightarrow SP+S'P=2 \times 5=10$

Axes are coordinates axes, the ellipse passes through the points where the straight line $\dfrac {x}{4}+\dfrac {y}{3}=1$  meets the coordinates axes. Then equation of the ellipses is 

  1. $\dfrac {x^{2}}{16}+\dfrac {y^{2}}{9}=1$

  2. $\dfrac {x^{2}}{64}+\dfrac {y^{2}}{36}=1$

  3. $\dfrac {x^{2}}{4}+\dfrac {y^{2}}{3}=1$

  4. $\dfrac {x^{2}}{8}+\dfrac {y^{2}}{6}=1$


Correct Option: A

The equation $\sqrt{(x-3)^{2}+(y-1)^{2}}+\sqrt{(x-3)^{2}+(y-1)^{2}}=6$ represents : 

  1. an ellipse

  2. a pair of straight lines

  3. a circle

  4. the line segment joining the point $(-3,1)$ to the point $(3,1)$


Correct Option: A

If a chord of $y^{ 2 } = 4ax$ makes an angle $\alpha ,\alpha \epsilon \left( 0,\pi /4 \right)$ with the positive direction of $X-axis$, then the minimum length of this focal chord is 

  1. $2 \sqrt{ 2 } a units$

  2. $4 \sqrt{ 2 } a units$

  3. $8a units$

  4. $16 a units$


Correct Option: A

If $(2,4)$ and $( 10,10)$ are the ends of a latus - rectum of an ellipse with eccentricity $\dfrac 12$, then the length of semi - major axis is 

  1. $\dfrac{20}{3}$

  2. $\dfrac {15}{3}$

  3. $\dfrac {40}{3}$

  4. None of these


Correct Option: A
Explanation:
Given $(2,4)$ and $(10,10)$ are the ends of the latusrectum and eccentricity is $\dfrac{1}{2}$

We know that length of the latus rectum is $\dfrac{2b^{2}}{a}$

We know that the distance between the two points

$(x _{1}, y _{1})$ and $(x _{2}, y _{2})$ is

$\sqrt{(x _{1}-x _{2})^{2}+(y _{1}-y _{2})^{2}}$

$\Rightarrow \dfrac{2b^{2}}{a^{2}}=\sqrt{(2-10)^{2}+(4-10)^{2}}$

$\Rightarrow \dfrac{2b^{2}}{a}=\sqrt{(-8)^{2}+(-6)^{2}}=\sqrt{64+36}=\sqrt{100}$

$\Rightarrow 36^{2}=10a$

$\Rightarrow b^{2}=5a$

we know that $b^{2}=a^{2}(1-e^{2})$

$a^{2}(1-e^{2})=5a$

$a\left(1-\left(\dfrac{1}{2}\right)^{2}\right)=5$

$a=\dfrac{5}{1-\dfrac{1}{4}}=\dfrac{5}{\dfrac{3}{4}}$

$a=\dfrac{20}{3}$

Thus the length of semi major axis is $\dfrac{20}{3}$

The equation $\dfrac{x^2}{1-r}-\dfrac{y^2}{1+r}=1, |r| < 1$ represents?

  1. An ellipse

  2. A hyperbola

  3. A circle

  4. None of these


Correct Option: A

Find the  Lactus Rectum of  $\displaystyle 9y^{2}-4x^{2}=36$ 

  1. $ 9$

  2. $6$

  3. $11$

  4. $15$


Correct Option: A
Explanation:

$\displaystyle \frac{y^{2}}{4}-\frac{x^{2}}{9}= 1.$ 
Here the coefficient of $\displaystyle y^{2}$ is + ive and that of $\displaystyle x^{2}$ is -ive and hence it represents a hyperbola whose transerse axis is vertical, i.e.
$\displaystyle a^{2}=4, b^{2}=9.$
$\displaystyle b^{2}= a^{2}\left ( e^{2}-1 \right )$
or $\displaystyle \frac{9}{4}+1=e^{2}\therefore e= \frac{\sqrt{13}}{2}$ 
Foci lie on y-axis $\displaystyle \left ( 0, \pm ae \right )$ i.e $\displaystyle \left ( 0, \pm ae \sqrt{13} \right )$ 
$\displaystyle L.R.= \frac{2b^{2}}{a}= 2.\frac{9}{2}= 9$

The difference between the lengths of the major axis and the latus-rectum of an ellipse is

  1. $ae$

  2. $2ae$

  3. $ae^{2}$

  4. $2ae^{2}$


Correct Option: D
Explanation:

We know that the length of major axis is $2a$ and latus rectum is $\dfrac {2b^2}{a}$

for the ellipse

$\dfrac {x^2}{a^2}+\dfrac {y^2}{b^2}=1$

Let $d$ be the difference

$d=2a-\dfrac {2b^2}{a}$

$d=\dfrac {2a^2 -2b^2}{a}$

We know thta $b^2 =a^2 (1-e^2)$

$d=\dfrac {2a^2 e^2}{a}$

$d=2ae^2$

The latus-rectum of the conic $3x^{2} + 4y^{2} - 6x + 8y - 5 = 0$ is

  1. $3$

  2. $\dfrac {\sqrt {3}}{2}$

  3. $\dfrac {2}{\sqrt {3}}$

  4. None of these


Correct Option: A
Explanation:
Given equation of conic is:

$3x^2+4y^2-6x+8y-5=0$

$3(x^2-2x)+4(y^2+2y)=5$

$3(x^2-2x+1)+4(y^2+2y+1)=5+3+4$

$3(x-1)^2 +4(y+1)^2 =12$

$\dfrac {3(x-1)^2}{12}+\dfrac {4(y+1)^2}{12}=1 \Rightarrow \dfrac {(x-1)^2}{4}+\dfrac {(y+1)^2}{3}=1$

so, $a=2, b=\sqrt 3$

$\therefore \ $ Latus rectum $=\dfrac {2b^2}{a}$

$=\dfrac {2[\sqrt 3]^2}{2}$

$=3$

The equation $\dfrac {x^{2}}{2 - \lambda} + \dfrac {y^{2}}{\lambda - 5} - 1 = 0$ represents an ellipse, if

  1. $\lambda < 5$

  2. $\lambda < 2$

  3. $2 < \lambda < 5$

  4. $\lambda < 2$ or $\lambda < 5$


Correct Option: C
Explanation:
General equation of ellipse is $\dfrac {x^2}{a^2}+\dfrac {y^2}{b^2}=1$

So both denominator should be positive as they are squares
 
In the given equation

$\dfrac {x^2}{2-\lambda} +\dfrac {y^2}{\lambda -5}-1=0$

So,
 
$2-\lambda > 0, +(\lambda -5) >o$

$\Rightarrow \ \lambda < 2, \lambda > 5$

$\Rightarrow \ 2 < \lambda < 5$

An ellipse has its centre at $(1, -1)$ and semi-major axis $= 8$ and it passes through the point $(1, 3)$. The equation of the ellipse is

  1. $\dfrac {(x + 1)^{2}}{64} + \dfrac {(y + 1)^{2}}{16} = 1$

  2. $\dfrac {(x - 1)^{2}}{64} + \dfrac {(y + 1)^{2}}{16} = 1$

  3. $\dfrac {(x - 1)^{2}}{16} + \dfrac {(y + 1)^{2}}{64} = 1$

  4. $\dfrac {(x + 1)^{2}}{64} + \dfrac {(y - 1)^{2}}{16} = 1$


Correct Option: B
Explanation:
Given that

centre is at $(1, -1)$

semi major axis $(a)=8$

so, equation of ellipse can be written as

$\dfrac {(x-1)^2}{a^2} +\dfrac {(y+1)^2}{b^2} =1.....(1)$

It passes through point $(1,3)$

i.e, $x=1, y=3$

Putting these value in equation $(1)$ we get

$\dfrac {(1-1)^2}{a^2} +\dfrac {(3+1)^2}{b^2}=1$

$\dfrac {16}{b^2}=1$

$b^2=16\ \Rightarrow b=4$

Substituting the values of $a$ and $b$ in equation $(1)$ we get

$\dfrac {(x-1)^2}{64}+\dfrac {(y+1)^2}{16}=1$

This is the required equation of ellipse

If $F _{1}=\left ( 3, 0 \right )$, $F _{2}=\left ( -3, 0 \right )$ and $P$ is any point on the curve $16x^{2}+25y^{2}=400$, then $PF _{1}+PF _{2}$ equals to:

  1. $8$

  2. $6$

  3. $10$

  4. $12$


Correct Option: C
Explanation:

The equation of the ellipse can be written as $\displaystyle \frac{x^{2}}{25}+\frac{y^{2}}{16}=1$

Here $a^{2}=25$, $b^{2}=16$

But $b^{2}=a^{2}\left ( 1-e^{2} \right )$

$\Rightarrow $   $16=25\left ( 1-e^{2} \right )$   $\Rightarrow $   $e=\dfrac35$

So that foci of the ellipse are $\left ( \pm ae, 0 \right )$ i.e. $\left ( \pm 3, 0 \right )$ or $F _{1}$ and $F _{2}.$

By definition of the ellipse, since $P$ is any point on the ellipse

$PF _{1}+PF _{2}=2a=2\times 5=10$

For a parabola whose focus is $(1, 1)$ and whose vertex is $(2, 1)$, the latus rectum is

  1. $ \sqrt{5}$

  2. $2 \sqrt{5}$

  3. $4$

  4. $4 \sqrt{5}$


Correct Option: C
Explanation:

The length of latus rectum$(l)=4 \times SC$
where S is the focus and C is the vertex
Therefore, $l=4$

The equation $\displaystyle \frac {x^2}{8-t}\, +\, \displaystyle \frac {y^2}{t-4}\, =\, 1$ will represent an ellipse if

  1. $t\, \in\, (1,\, 5)$

  2. $t\, \in\, (2,\, 8)$

  3. $t\, \in\, (4,\, 8)\, -\, {6}$

  4. $t\, \in\, (4,\, 10)\, -\, {6}$


Correct Option: C
Explanation:

Consider Equation, $\displaystyle\frac{x^2}{a^2}+\displaystyle\frac{y^2}{b^2}=1$ to represent an ellipse equation.
$a>0,b>0,a\neq b$
Given,equation $\displaystyle\frac{x^2}{(8-t)}+\displaystyle\frac{y^2}{(t-4)}=1$
$\Rightarrow (8-t)>0\;$ and $\;(t-4)>0,(8-t)\neq(t-4)$
$\Rightarrow t\in(-\infty,8) \cap (4,\infty) \cap$ {$t\neq6$}
$\Rightarrow t\in(4,8)-${$6$}

The total number of real tangents that can be drawn to the ellipse $3x^{2}+5y^{2}=32$ and $25x^{2}+9y^{2}=450$ passing through $(3,5)$ is

  1. $0$

  2. $2$

  3. $3$

  4. $4$


Correct Option: C
Explanation:

$(3,5)$ lies on $25x^2+9y^2=450$

Therefore, one tangent can be drawn

and $(3,5)$ lies outside $3x^2+5y^2=32$ because $S _1>0$

Therefore, two tangents can be drawn.
So total 3 tangents

$\mathrm{S}$ and $\mathrm{S}^{'}$ are the foci of the ellipse $25x^{2}+16y^{2}=1600$, then the sum of the distances from $\mathrm{S}$ and $\mathrm{S}'$ to the point $(4\sqrt{3},5)$ is:

  1. $20$

  2. $15$

  3. $40$

  4. $30$


Correct Option: A
Explanation:

Given ellipse is $25{ x }^{ 2 }+16{ y }^{ 2 }=1600$

This can be written as $\displaystyle \frac { { x }^{ 2 } }{ 64 } +\frac { { y }^{ 2 } }{ 100 } =1$
Compare it to standard form of ellipse to get $a=8,b=10$
here $a<b$
So eccentricity e$=\sqrt { 1-\displaystyle \frac { { a }^{ 2 } }{ { b }^{ 2 } }  } =\sqrt { 1-\displaystyle\frac { 64 }{ 100 }  } =\displaystyle \frac { 3 }{ 5 } $
Now the foci are given by $\left( 0,\pm \sqrt { { b }^{ 2 }-{ a }^{ 2 } }  \right) $
So $foci:\left( 0,\pm \sqrt { 36 }  \right) $
$S:\left( 0,6 \right) ,{ S } _{ 1 }:\left( 0,-6 \right) $
Now find distance of $S$ and ${ S } _{ 1 }$ from the given point $\left( 4\sqrt { 3 } ,5 \right) $
So sum$=\sqrt { { \left( 4\sqrt { 3 }  \right)  }^{ 2 }+1 } +\sqrt { { \left( 4\sqrt { 3 }  \right)  }^{ 2 }+{ \left( 11 \right)  }^{ 2 } } =7+13=20$

The length of the latusrectum of the parabola $169\left{ { \left( x-1 \right)  }^{ 2 }+{ \left( y-3 \right)  }^{ 2 } \right} ={ \left( 5x-12y+17 \right)  }^{ 2 }$

  1. $\cfrac { 14 }{ 13 } $

  2. $\cfrac { 28 }{ 13 } $

  3. $\cfrac { 12 }{ 13 } $

  4. None of these


Correct Option: B
Explanation:

Here ${ \left( x-1 \right)  }^{ 2 }+{ \left( y-3 \right)  }^{ 2 }={ \left{ \cfrac { 5x-12y+17 }{ \sqrt { { 5 }^{ 2 }+{ \left( -12 \right)  }^{ 2 } }  }  \right}  }^{ 2 }$


$\therefore$ The focus is $(1,3)$ and the directrix is $5x-12y+17=0$

The distance of the focus from the directrix

$=\left| \cfrac { 5\times 1-12\times 3+17 }{ \sqrt { { 5 }^{ 2 }+{ \left( -12 \right)  }^{ 2 } }  }  \right| =\cfrac { 14 }{ 13 } $

$\therefore$ Length of latusrectum $=2\times \cfrac { 14 }{ 13 } =\cfrac { 28 }{ 13 } $

The equation of the ellipse having vertices at $\displaystyle \left( \pm 5,0 \right) $ and foci $\displaystyle \left( \pm 4,0 \right) $ is

  1. $\displaystyle \frac { { x }^{ 2 } }{ 25 } +\frac { { y }^{ 2 } }{ 16 } =1$

  2. $\displaystyle 9{ x }^{ 2 }+25{ y }^{ 2 }=225$

  3. $\displaystyle \frac { { x }^{ 2 } }{ 9 } +\frac { { y }^{ 2 } }{ 25 } =1$

  4. $\displaystyle 4{ x }^{ 2 }+5{ y }^{ 2 }=20$


Correct Option: B
Explanation:

The vertices and foci of an ellipse are $\displaystyle \left( \pm 5,0 \right) $ and $\displaystyle \left( \pm 4,0 \right) $ respectively.
$\displaystyle \therefore \quad a=5$ and $\displaystyle ae=4$
$\displaystyle \Rightarrow \quad e=\frac { 4 }{ 5 } $
We know that,
$\displaystyle e=\sqrt { 1-\frac { { b }^{ 2 } }{ { a }^{ 2 } }  } $
$\displaystyle \Rightarrow \quad \frac { 16 }{ 25 } =1-\frac { { b }^{ 2 } }{ 25 } \Rightarrow { b }^{ 2 }=9$
Hence, equation of an ellipse is
$\displaystyle \frac { { x }^{ 2 } }{ 25 } +\frac { { y }^{ 2 } }{ 9 } =1\Rightarrow 9{ x }^{ 2 }+25{ y }^{ 2 }=225$

The sum of the focal distances of any point on the conic $\dfrac {x^{2}}{25} + \dfrac {y^{2}}{16} = 1$ is

  1. $10$

  2. $9$

  3. $41$

  4. $18$


Correct Option: A
Explanation:

We know, if P is any point on the curve, then Sum of focal distances $=$ length of major axis
i.e., $SP + S'P = 2a$
$= 2(5) [\because a^{2} = 5^{2}]$
$= 10$

The graph of the equation $x^2+\dfrac{y^2}{4}=1$ is

  1. an ellipse

  2. a circle

  3. a hyperbola

  4. a parabola

  5. two straight lines


Correct Option: A
Explanation:

Given, ${x}^{2}+\dfrac{{y}^{2}}{4}=1$
It is in the form of  $ \dfrac{{x}^{2}}{{a}^{2}}+\dfrac{{y}^{2}}{{b}^{2}}=1$
Therefore, it represents an ellipse.

The graph of the equation $4y^2 + x^2= 25$ is

  1. a circle

  2. an ellipse

  3. a hyperbola

  4. a parabola

  5. a straight line


Correct Option: B
Explanation:

Given, $4{y}^{2}+{x}^{2}=25$

$\Rightarrow \dfrac { { y }^{ 2 } }{ 25/4 } +\dfrac { { x }^{ 2 } }{ 25 } =1$
It is in the form of ellipse $\left (\dfrac { { y }^{ 2 } }{ {a}^{2} } +\dfrac { { x }^{ 2 } }{ {b}^{2} } =1\right)$
So, the correct answer is option $B$.

Latus rectum of the conic satisfying the differential equation $x dy+y dx=0$ and passing through the point $(2,8)$ is :

  1. $4\sqrt{2}$

  2. $8$

  3. $8\sqrt{2}$

  4. $16$


Correct Option: C
Explanation:

The differential equation is

$xdy+ydx=0$
$d(xy)=0$
By integrating we get,
$xy=k$..........(1)

Equation (1) passes through the point $(2,8)$, so
$(2)(8)=k$
$k=16$

So, equation of the conic is 
$xy=16$
which is a rectangular hyperbola $(xy=c^{2})$, where $c=4$

Length of latus rectum for rectangular hyperbola is $2\sqrt{2}c=8\sqrt{2}$
 





The foci of an ellipse are located at the points $(2, 4)$ and $(2, -2)$. The points $(4, 2)$ lies on the ellipse. If $a$ and $b$ represent the lengths of the semi-major and semi-minor axes respectively, then the value of $(ab)^{2}$ is equal to

  1. $68 + 22\sqrt {10}$

  2. $6 + 22\sqrt {10}$

  3. $26 + 10\sqrt {10}$

  4. $6 + 10\sqrt {10}$


Correct Option: C
Explanation:

The distance between the foci is $6$, so $c = 3$.
The sum of the distance from $(4, 2)$ to each of the foci is the major axis length,
so
$2a = \sqrt {(4 - 2)^{2} + (2 - 4)^{2}} + \sqrt {(4 - 2)^{2} + (2 + 2)^{2}}$
$= \sqrt {4 + 4} + \sqrt {4 + 16} = \sqrt {8} + \sqrt {20}$
$= 2\sqrt {2} + 2\sqrt {5} \Rightarrow a = \sqrt {2} + \sqrt {5}$
Also, for an ellipse,
$b^{2} = a^{2} - c^{2} = (\sqrt {2} + \sqrt {5})^{2} - 3^{2}$
$= 7 + 2\sqrt {10} = -2 + 2\sqrt {10}$.
Thus, we have
$(ab)^{2} = (7 + 2\sqrt {10})(-2 + 2\sqrt {10})$
$= -14 + 14\sqrt {10} - 4\sqrt {10} + 40$
$= 26 + 10\sqrt {10}$.

Which of the following is/are not false?

  1. The mid point of the line segment joining the foci is called the centre of the ellipse.

  2. The line segment through the foci of the ellipse is called the major axis.

  3. The end points of the major axis are called the vertices of the ellipse.

  4. Ellipse is symmetric with respect to Y-axis only.


Correct Option: A,B,C
Explanation:

(A) Midpoint of the line segment joining the foci is called the centre of ellipse: TRUE


(B) Line segment through the foci is called major axis: TRUE

(C) End point of major axis are called vertices of ellipse: TRUE

(D) Ellipse is symmetric with respect to Y-axis only.: FALSE
(Ellipse is symmetric to both x-axis and y-axis)

The equation $2x^2+3y^2-8x-18y+35=\lambda$ represents?

  1. A circle for all $\lambda$

  2. An ellipse if $\lambda < 0$

  3. The empty set if $\lambda > 0$

  4. A-point if $\lambda = 0$


Correct Option: D
Explanation:

Given:

$ 2x^{2} + 3y - 8x - 18y + 35 = \lambda  $

$ 2\left (x^{2} - 4x \right ) + 3 \left ( y^{2} - 6y + 35 \right ) = \lambda  $

$ 2\left (x - 2 \right )^{2} + 3 \left ( y - 3 \right )^{2} = \lambda  $

For $ \lambda = 0 $, then

$ 2\left (x - 2 \right )^{2} + 3 \left ( y - 3 \right )^{2} = 0  $

Thus, the point is $ \left ( 2,3 \right ) $.

Hence, the correct option is ‘d’.

The equation of ellipse whose major axis is along the direction of x-axis, eccentricity is $e=2/3$

  1. $36x^2+20y^2=405$

  2. $20x^2+36y^2=405$

  3. $30x^2+22y^2=411$

  4. $22x^2+32y^2=409$


Correct Option: B
Explanation:
$\begin{array}{l} e=\frac { 2 }{ 3 } =\sqrt { \frac { { { a^{ 2 } }-{ b^{ 2 } } } }{ c }  }  \\ \Rightarrow { \left( { \frac { 2 }{ 3 }  } \right) ^{ 2 } }=\frac { { { a^{ 2 } }-{ b^{ 2 } } } }{ { { a^{ 2 } } } }  \\ \Rightarrow \frac { { 4{ a^{ 2 } } } }{ a } ={ a^{ 2 } }-{ b^{ 2 } } \\ \Rightarrow { b^{ 2 } }={ a^{ 2 } }-4{ a^{ 2 } }=\frac { { 5{ a^{ 2 } } } }{ 9 } \to \left( i \right)  \end{array}$
Equation of Ellipse are
$\begin{array}{l} \Rightarrow \frac { { { x^{ 2 } } } }{ { { a^{ 2 } } } } +\frac { { { y^{ 2 } } } }{ { { b^{ 2 } } } } =1 \\ \Rightarrow \frac { { { x^{ 2 } } } }{ { { a^{ 2 } } } } +\frac { { 9{ y^{ 2 } } } }{ { 5{ a^{ 2 } } } } =1\to \left( { ii } \right)  \\ Put\, \, { a^{ 2 } }=\frac { { 405 } }{ { 20 } } \, \, \left( { From\, \, option\, \, in\, \, equation\left( i \right)  } \right)  \\ Then,\, \, { b^{ 2 } }=\frac { { 405 } }{ { 360 } }  \end{array}$
Hence, equation of ellipse is
$ \Rightarrow \frac{{{x^2}}}{{\left( {\frac{{405}}{{20}}} \right)}} + \frac{{{y^2}}}{{\left( {\frac{{405}}{{36}}} \right)}} =  - 1,20{x^2} + 36{y^2} = 405$

Eccentricity of ellipse $\frac{{{x^2}}}{{{a^2} + 1}} + \frac{{{y^2}}}{{{a^2} + 2}} = 1\,is\,\frac{1}{{\sqrt 3 }}$ then length of Latus rectum is 

  1. $\frac{2}{{\sqrt 3 }}$

  2. $\frac{4}{{\sqrt 3 }}$

  3. $2\sqrt 3 $

  4. $\frac{{\sqrt 3 }}{2}$


Correct Option: B
Explanation:
Let ${ A }^{ 2 }={ a }^{ 2 }+1$,  ${ B }^{ 2 }={ a }^{ 2 }+2$    {Here, ${ B }^{ 2 }>{ A }^{ 2 }$}
So, $e=\sqrt { 1-\dfrac { { A }^{ 2 } }{ { B }^{ 2 } }  } =\sqrt { 1-\dfrac { { a }^{ 2 }+1 }{ { a }^{ 2 }+2 }  } =\dfrac { 1 }{ \sqrt { { a }^{ 2 }+2 }  } =\dfrac { 1 }{ \sqrt { 3 }  } $
So,  $\sqrt { { a }^{ 2 }+2 } =\sqrt { 3 } \Rightarrow a=\pm 1$
So, length of lotus return $=2\dfrac { { A }^{ 2 } }{ B } $
Length $=\dfrac { 2\left( { a }^{ 2 }+1 \right)  }{ \sqrt { { a }^{ 2 }+2 }  } =\dfrac { 2\left( 2 \right)  }{ \sqrt { 3 }  } =\dfrac { 4 }{ \sqrt { 3 }  } $

If the latus rectum of an ellipse $x ^ { 2 } \tan ^ { 2 } \varphi + y ^ { 2 } \sec ^ { 2 } \varphi =$ $1$ is $1 / 2 ,$ then $\varphi$ is

  1. $\pi / 2$

  2. $\pi / 6$

  3. $\pi / 3$

  4. $5$ $\pi/ 12$


Correct Option: D
Explanation:

Given $x^2 tan^2 \phi + y^2 \, sec^2 \phi = 1$

$\rightarrow \dfrac{x^2}{(1/tan^2 \phi)} + \dfrac{y^2}{(1/sec^2 \phi)} = 1$
$a = \pm \dfrac{1}{tan \phi} , b = \pm \dfrac{1}{sec \phi}$
and $\rightarrow e^2 = 1 - \dfrac{b^2}{a^2}$
$\rightarrow e^2 = 1 - \dfrac{1/sec^2 \phi}{1/tan^2 \phi} = 1 - \dfrac{tan^2 \phi}{sec^2 \phi}$
$\rightarrow e^2 = 1 - sin^2 \phi = cos^2 \phi$
length of latus rectum 
$(LL') = \dfrac{2 b^2}{a} = 2a (1 - e^2)$
$\rightarrow 2a (1 - cos^2 \phi) = 2a. sin^2 \phi = \dfrac{1}{2} $ (Given)
$\therefore 2. \dfrac{cos \phi}{sin \phi} sin^2 \phi = \dfrac{1}{2}$
$\rightarrow 2 cos \phi \, sin \phi = \dfrac{1}{2}$
$\rightarrow sin^2 \phi = \dfrac{1}{2} $
$\rightarrow 2 \phi = \dfrac{\pi}{6} , \dfrac{5 \pi}{6}$
$\therefore \phi = \dfrac{\pi}{12}$    or 
$\phi = \dfrac{ 5 \pi}{12}$

The curve represented by $Rs \left(\dfrac{1}{z}\right)=C$ is (where $C$ is a constant and $\neq 0$)

  1. Ellipse

  2. Parabola

  3. Circle

  4. Straight line


Correct Option: C
Explanation:

$\begin{array}{l} { { Re } }\, \, \left( { \frac { 1 }{ z }  } \right) =c \ { { Re } }\, \, \left( { \frac { 1 }{ { x+iy } }  } \right) =c \ { { Re } }\, \, \left( { \frac { { x-iy } }{ { { x^{ 2 } }+{ y^{ 2 } } } }  } \right) =c \ \frac { x }{ { { x^{ 2 } }+{ y^{ 2 } } } } =c \ c\left( { { x^{ 2 } }+{ y^{ 2 } } } \right) -{ x }=0 . \end{array}$


Hence, this is represent circle.

The eccentricity of an ellipse whose centre is at the origin is $\frac{1}{2}$.If one of its directrices is $x=-4$, then the equation of the normal to it at $(1, \frac{3}{2})$ is:

  1. $4x+2y=7$

  2. $x+2y=4$

  3. $2y-x=2$

  4. $4x-2y=1$


Correct Option: A

A point $(\alpha, \beta)$ lies on a circle $x^2+y^2=1$, then locus of the point $(3\alpha +2\beta)$ is a$/$an.

  1. Straight line

  2. Ellipse

  3. Parabola

  4. None of these


Correct Option: B
Explanation:
Point will be $(3\alpha ,2\beta )$ not $( 3\alpha +2\beta )$
Now $ x^{2}+y^{2}=1 $
Radium is $1$ unit,hence parametric co - ordinate is 
$(\alpha ,\beta )= (1\cos\theta ,1\sin\theta )=(\cos\theta , \sin\theta )$
Hence
Point is $ (3\cos\theta ,2\sin\theta )$
Hence
$(x,y)= (3\cos\theta ,2\sin\theta )$
$x=3\cos\theta $
$ \Rightarrow \dfrac{x}{3}\cos\theta$    ...(i)
$ y=2\sin\theta $
$ \Rightarrow \dfrac{y}{2} = \sin \theta$   ...(ii)
$ (i)^{2} + (ii)^{2} $
$\dfrac{x^{2}}{9} + \dfrac{y^{2}}{4} \cos^{2}\theta + \sin^{2} \theta $
$ \dfrac{x^{2}}{9}+ \dfrac{y^{2}}{4} = 1 $
which is equation of ellipse

The eccentricity of the ellipse $9x^2+5y^2-30 y=0$ is=

  1. $\dfrac{1}{3}$

  2. $\dfrac{2}{3}$

  3. $\dfrac{3}{4}$

  4. None of these


Correct Option: B
Explanation:

$9x^2+5(y^2-6y)=0$
$9x^2+5(y^2-6y+9)=45$
$9x^2+5(y-3)^2=45$
$\dfrac { x^2 }{ 5 }+\dfrac { (y-3)^2 }{ 9 }=1$  
$a^2 < b^2$
$a^2=b^2(1-e^2)$
$5=9(1-e^2)$
$\dfrac { 5 }{ 9 }=1-e^2$
$e^2=\dfrac{4}{9}$ 
$e=\dfrac{2}{3}$

The equation of the ellipse whose vertices are $\left (2,-2\right),\left (2,4\right)$ and eccentricity is $a/3$ is- 

  1. $\dfrac { { \left( x-2 \right) }^{ 2 } }{ 9 } +\dfrac { { \left( y-1 \right) }^{ 2 } }{ 8 } =1$

  2. $\dfrac { { \left( x-2 \right) }^{ 2 } }{ 8 } +\dfrac { { \left( y-1 \right) }^{ 2 } }{ 9 } =1$

  3. $\dfrac { { \left( x+2 \right) }^{ 2 } }{ 8 } +\dfrac { { \left( y+1 \right) }^{ 2 } }{ 9 } =1$

  4. $\dfrac { { \left( x-2 \right) }^{ 2 } }{ 9 } +\dfrac { { \left( y+1 \right) }^{ 2 } }{ 8 } =1$


Correct Option: B

Equations of the ellipse with centre $(1,2),$ one focus at $(6,2)$ and passing through $(4,6)$ is:

  1. $\dfrac{{{\left( x+1 \right)}^{2}}}{45}+\dfrac{{{\left( y-2 \right)}^{2}}}{20}=1$

  2. $\dfrac{{{\left( x-1 \right)}^{2}}}{45}+\dfrac{{{\left( y+2 \right)}^{2}}}{20}=1$

  3. $\dfrac{{{\left( x-1 \right)}^{2}}}{45}+\dfrac{{{\left( y-2 \right)}^{2}}}{20}=1$

  4. $\dfrac{{{\left( x+1 \right)}^{2}}}{45}+\dfrac{{{\left( y+2 \right)}^{2}}}{20}=1$


Correct Option: C
Explanation:

We know that,

The equation of ellipse whose centre $(h, k)$.

$\dfrac{{{\left( x-h \right)}^{2}}}{{{a}^{2}}}+\dfrac{{{\left( y-k \right)}^{2}}}{{{b}^{2}}}=1$


Given centre of ellipse $\left( h,k \right)=\left( 1,2 \right)$

Then, equation of ellipse $\dfrac{{{\left( x-1 \right)}^{2}}}{{{a}^{2}}}+\dfrac{{{\left( y-2 \right)}^{2}}}{{{b}^{2}}}=1$          ……. (1)


But, the ellipse passes through given point $\left( x,y \right)=\left( 4,6 \right)$


By equation (1), we get

$ \dfrac{{{\left( 4-1 \right)}^{2}}}{{{a}^{2}}}+\dfrac{{{\left( 6-2 \right)}^{2}}}{{{b}^{2}}}=1 $

$ \dfrac{{{3}^{2}}}{{{a}^{2}}}+\dfrac{{{4}^{2}}}{{{b}^{2}}}=1 $

$ \Rightarrow 9{{b}^{2}}+16{{a}^{2}}={{a}^{2}}{{b}^{2}} $

$\Rightarrow 16{{a}^{2}}+9{{b}^{2}}={{a}^{2}}{{b}^{2}}$        …… (2)


Now, distance between focus and centre is $c=\sqrt{{{a}^{2}}-{{b}^{2}}}$

So,

$ c=\sqrt{{{\left( 1-6 \right)}^{2}}+{{\left( 2-2 \right)}^{2}}} $

$ c=\sqrt{{{5}^{2}}} $

$ c=5 $

$\sqrt{{{a}^{2}}-{{b}^{2}}}=5$


On squaring both sides, we get,

${{a}^{2}}-{{b}^{2}}=25$          …… (3)


By equation (2) and (3), we get

$ 9{{b}^{2}}+400+16{{b}^{2}}=25{{b}^{2}}+{{b}^{4}} $

$ 25{{b}^{2}}+400=25{{b}^{2}}+{{b}^{4}} $

$ 400={{b}^{4}} $

$ {{b}^{4}}-400=0 $

$ \left( {{b}^{2}}-20 \right)\left( {{b}^{2}}+20 \right)=0 $

${{b}^{2}}-20=0\,$            and        ${{b}^{2}}+20=0\,$

${{b}^{2}}=20$                and        ${{b}^{2}}=-20$      (Rejected)


Put the value of ${{b}^{2}}$ in equation (3) and we get,

${{a}^{2}}-{{b}^{2}}=25$

$ {{a}^{2}}-20=25 $

$ {{a}^{2}}=45 $


Now, put the value of ${{a}^{2}}$ and ${{b}^{2}}$ in equation (1), we get,

$\dfrac{{{\left( x-1 \right)}^{2}}}{45}+\dfrac{{{\left( y-2 \right)}^{2}}}{20}=1$

Show that the equation $(10x-5)^2+(10y-5)^2=(3x+4y-1)^2$ represents an ellipse. Find the length of its latus rectum.

  1. $\dfrac{5}{2}$

  2. $\dfrac{1}{2}$

  3. $\dfrac{3}{2}$

  4. $-\dfrac{1}{2}$


Correct Option: C
Explanation:
$(10x-5)^{2}+(10y-5)^{2}=(3x+4y-1)^{2}$
$25(2x-1)^{2}+25(2y-1)^{2}=(3x+4y-1)^{2}$
$\therefore (2x-1)^{2}+(2y-1)^{2}=\left(\dfrac{3x+4y-1}{5}\right)^{2}$
$4\left(x-\dfrac{1}{2}\right)^{2}+4\left(y-\dfrac{1}{2}\right)^{2}=\dfrac{1}{4}\left(\dfrac{3x+4y-1}{5}\right)^{2}$
$\left(x-\dfrac{1}{2}\right)^{2}+\left(y-\dfrac{1}{2}\right)^{2}=\dfrac{1}{4}\left(\dfrac{3x+4y-1}{5}\right)^{2}$
By observing equation $(1)$, we infer that 
$\sqrt{\left(x-\dfrac{1}{2}\right)^{2}+\left(y-\dfrac{1}{2}\right)^{2}}=\dfrac{1}{2}\left(\dfrac{3x+4y-1}{5}\right)$
Centre of ellipse: $\left(\dfrac{1}{2}, \dfrac{1}{2}\right)$
$\left(e^{2}=1-\dfrac{b^{2}}{a^{2}}\right)$
Equation of directrix $=(3x+4y-1=0)$
Also $d$ (Centre, directrix) $=\dfrac{3\left(\dfrac{1}{2}\right)+4\left(\dfrac{1}{2}\right)-1}{5}$
$=\dfrac{\dfrac{5}{2}+1}{5}=\boxed{\dfrac{1}{2}}$
$\therefore \boxed{a+a _{e}=\dfrac{1}{2}; a+\dfrac{a}{2}=\dfrac{1}{2}}$
$\therefore \dfrac{3a}{2}=\dfrac{1}{2}; \boxed{a\dfrac{1}{3}}$
$1-\dfrac{b^{2}}{a^{2}}=\dfrac{1}{4}; \dfrac{b^{2}}{a^{2}}=\dfrac{3}{4}; b=\dfrac{1}{\sqrt{12}}$
Length $=\dfrac{2b^{2}}{a}=2\left(\dfrac{1}{2}\right)\times \dfrac{1}{1/3}=\boxed{\dfrac{1}{2}}$




If the equation of the ellipse is $3x^2+2y^2+6x-8y+5=0$, then which of the following is/are true?

  1. $e=\dfrac {1}{\sqrt 3}$

  2. Center is $(-1, 2)$

  3. Foci are $(-1, 1)$ and $(-1, 3)$

  4. Directrices are $y=2\pm \sqrt 3$


Correct Option: A,B,C
Explanation:

$3x^2+2y^2+6x-8y+5=0$
$\Rightarrow \dfrac {(x+1)^2}{2}+\dfrac {(y-2)^2}{3}=1$
Therefore, centre is $(-1, 2)$ and ellipse is vertical
$(\because b > a)$
$a^2=2, b^2=3$
Now $2=3(1-e^2)$
$\Rightarrow e=\dfrac {1}{\sqrt 3}$
Foci are $(-1, 2\pm be)$ and $(-1, 2\pm 1)$.
Hence, the foci are $(-1, 3)$ and $(-1, 1)$
The equations of the directrices are $y=2\pm \dfrac {b}{e}\Rightarrow y=5$ and $y=-1$

The eccentricity of the ellipse $\displaystyle 9x^{2}+4y^{2}-30y=0$ is $\displaystyle \frac{1}{p}\sqrt{q}$. Find the value $p $ and $q.$

  1. $p=2,q=2$

  2. $p=3,q=5$

  3. $p=2,q=5$

  4. $p=4,q=5$


Correct Option: B
Explanation:

Given ellipse may be written as,
$\displaystyle9x^{2}+4\left ( y^{2}-\frac{15}{2}y+\frac{225}{16} \right

)=\frac{225}{4}$
or $\displaystyle \frac{x^{2}}{225/36}+\frac{\left (

y-15/4 \right )^{2}}{225/16}=1$
$\displaystyle \therefore

b^{2}=\frac{225}{16}, a^{2}=\frac{225}{36}$
$\displaystyle \therefore

e^{2}=1-\frac{a^{2}}{b^{2}}=1-\frac{16}{36}=1-\frac{4}{9}=\frac{5}{9}$
$\displaystyle

\therefore e=\frac{1}{3}\sqrt{5}.$

For the ellipse 4x2+y28x+2y+1=04x2+y2−8x+2y+1=0 which of the following statements are correct:

  1. Foci are $\displaystyle \left ( -1, -1\pm \sqrt{3} \right ),$ Directrices are  $\displaystyle y=-1\pm \frac{4}{\sqrt{3}}$

  2. Foci are $\displaystyle \left ( 1, 1\pm \sqrt{3} \right ),$ Directrices are  $\displaystyle y=1\pm \frac{4}{\sqrt{3}}$

  3. Foci are $\displaystyle \left ( 1, -1\pm \sqrt{3} \right ),$ Directrices are  $\displaystyle y=-1\pm \frac{4}{\sqrt{3}}$

  4. Foci are $\displaystyle \left ( 1, -1\pm \sqrt{3} \right ),$ Directrices are  $\displaystyle y=1\pm \frac{4}{\sqrt{3}}$


Correct Option: C
Explanation:

$\displaystyle 4x^{2}+y^{2}-8x+2y+1=0$
$\displaystyle 4(x^2-2x)+(y^2+2y)=-1$
$\displaystyle 4(x^2-2x+1)+(y^2+2y+1)=-1+5=4$
$\displaystyle 4(x-1)^2+(y+1)^2=4$
$\displaystyle \frac{\left ( x-1 \right )^{2}}{1}+\frac{\left (

y+1 \right )^{2}}{4}=1$
$\displaystyle \Rightarrow a^2 =1, b^2 = 4$ Clearly here $a^2< b^2$ so the axis of the ellipse is parallel to y-axis
Now,  $\displaystyle e=\sqrt{1-\frac{a^2}{b^2}}=\frac{\sqrt{3}}{2} \therefore $ Foci $\displaystyle \left

( 1, -1\pm \sqrt{3} \right ),$ Directrices  $\displaystyle y=-1\pm

\frac{4}{\sqrt{3}}.$

Find the length of latus rectum of the ellipse $4x^2\, +\, 9y^2\, \,+ 8x\, \,+ 36y\, +\, 4\, =\, 0$.

  1. $\displaystyle \frac{1}{3} $

  2. $\displaystyle \frac{2}{3} $

  3. $\displaystyle \frac{4}{3} $

  4. $\displaystyle \frac{8}{3} $


Correct Option: D
Explanation:

$4x^2+9y^2+8x+36y+4=0$
$\Rightarrow 4(x^2+2x)+9(y^2+4y)=-4$
$\Rightarrow 4(x^2+2x+1)+9(y^2+4y+4)=-4+4+36$
$\Rightarrow 4(x+1)^2+9(y+2)^2=36$
$\Rightarrow \dfrac{(x+1)^2}{9}+\dfrac{(y+2)^2}{4}=1$
$\therefore a^2=9,b^2=4$
Hence length of latus rectum is $=\dfrac{2b^2}{a}=\dfrac{8}{3}$

Find the the length of the major axis of ellipse: $12x^2+4y^2+24x-16y+25=0$

  1. $ \sqrt{3}$

  2. $ 2 \sqrt{3}$

  3. $ 2 \sqrt{\dfrac32}$

  4. $ 2 \sqrt{6}$


Correct Option: A
Explanation:

$12x^{ 2 }+4y^{ 2 }+24x-16y+25=0$


$\Rightarrow 12(x^2+2x+1)+4(y^2-4y+4)=3$

$\Rightarrow 12(x+1)^2+4(y-2)^2=(\sqrt 3)^2$

$\Rightarrow \displaystyle \dfrac { { \left( x+1 \right)  }^{ 2 } }{ { \left( \dfrac { 1 }{ 2 }  \right)  }^{ 2 } } +\dfrac { { \left( y-2 \right)  }^{ 2 } }{ { { \left( \dfrac { \sqrt3 }{ 2 }  \right)  }^{ 2 } } } =1\ $


Length of major axis $=2a=\sqrt3.$

Arrange the following ellipses in the ascending order of their lengths of major axis:
$\mathrm{A}:x^{2}+2y^{2}-4x+12y+14=0$
$\displaystyle \mathrm{B}:\frac{(x-1)^{2}}{9}+\frac{(y-1)^{2}}{16}=1$
$\mathrm{C}:4x^{2}+9y^{2}=1$
$\mathrm{D}:x=3+6\cos\theta,y=5+7\sin\theta$

  1. C, A, B, D

  2. C, A, D, B

  3. A, B, C, D

  4. C, D, A, B


Correct Option: A
Explanation:
For A:
${ x }^{ 2 }+2{ y }^{ 2 }−4x+12y+14=0\\ \Rightarrow{ x }^{ 2 }-4x+4+2\left( { y }^{ 2 }+6y+9 \right) -8=0\\ \Rightarrow { \left( x-2 \right)  }^{ 2 }+2{ \left( y+3 \right)  }^{ 2 }=8\\ \\ \Rightarrow \cfrac { { \left( x-2 \right)  }^{ 2 } }{ 8 } +\cfrac { { \left( y+3 \right)  }^{ 2 } }{ 4 } =1$

$\therefore$ Length of major axis= $2\sqrt { 2 } $

For B:
$\\ \\  \cfrac { { \left( x-1 \right)  }^{ 2 } }{ 9 } +\cfrac { { \left( y-1 \right)  }^{ 2 } }{ 16 } =1$

$\therefore$ Length of major axis= 4

For C:
$4{ x }^{ 2 }+9{ y }^{ 2 }=1\\ \Rightarrow\cfrac { { x }^{ 2 } }{ \frac { 1 }{ 4 }  } +\cfrac { { y }^{ 2 } }{ \frac { 1 }{ 9 }  } =1$

$\therefore$ Length of major axis= $\cfrac{1}{2}$

For D:
$\\ x-3=6\cos \theta\\ y-5=7\sin \theta$

$\therefore$ Length of major axis= 7

$\therefore$ Option [A] C,A,B,D

lf $ax^{2}+by^{2}+2gx+2fy+c=0$ represents an ellipse, then

  1. its major axis is parallel to $x-$axis

  2. its major axis is parallel to $y-$axis

  3. its axes (i.e. major axis and minor axis) are neither parallel to $x-$axis nor parallel to $y-$axis

  4. its axes are parallel to co-ordinate axes


Correct Option: D

The abscissa of the focii of the ellipse $25(\mathrm{x}^{2}-6\mathrm{x}+9)+16\mathrm{y}^{2}=400$ is:

  1. $ (4,-ae), (4,ae)$

  2. $ (3,-ae), (3,ae)$

  3. $ (5,-ae), (5,ae)$

  4. None of these


Correct Option: B
Explanation:

The equation of the ellipse can be written as $\dfrac{(x-3)^{2}}{4^{2}}+\dfrac{y^{2}}{5^{2}}=1$
$\therefore $ Minor axis is along the line $x-3=0$ and major axis is $y=0$ 
$(\because a^{2}=4^{2}< b^{2}=5^{2})$
$\therefore S\,$ and $ S^{'}$ are $(3,3),(3,-3)$
$\because 4^{2}=5^{2}(1-e^{2})\Rightarrow e=\dfrac{3}{5}\left ( \because ae=5\dfrac{3}{5}=3 \right )$ and $S\equiv(3,ae )$, $S^{'}\equiv(3,-ae).$
Ans: B

The eccentricity of the curve with equation ${ x }^{ 2 }+{ y }^{ 2 }-2x+3y+2=0$ is

  1. $0$

  2. $\sqrt { 2 }$

  3. $1/2$

  4. ${ 1 }/{ \sqrt { 2 } }$


Correct Option: A
Explanation:

Given ${x}^{2}+{y}^{2}-2x+3y+2=0$

$\Rightarrow \left({x}^{2}-2x\right)+\left({y}^{2}+3y\right)+2=0$
$\Rightarrow \left({x}^{2}-2x+1-1\right)+\left({y}^{2}+2\times 1\times \dfrac{3}{2}+\dfrac{9}{4}-\dfrac{9}{4}\right)+2=0$
$\Rightarrow {\left(x-1\right)}^{2}-1+{\left(y+\dfrac{3}{2}\right)}^{2}-\dfrac{9}{4}+2=0$
$\Rightarrow {\left(x-1\right)}^{2}+{\left(y+\dfrac{3}{2}\right)}^{2}=-2+1+\dfrac{9}{4}=\dfrac{5}{4}$
Divide both sides by ${\left(\sqrt{\dfrac{5}{4}}\right)}^{2}$ we get
$\dfrac{{\left(x-1\right)}^{2}}{{\left(\sqrt{\dfrac{5}{4}}\right)}^{2}}+\dfrac{{\left(y+\dfrac{3}{2}\right)}^{2}}{{\left(\sqrt{\dfrac{5}{4}}\right)}^{2}}$  is an ellipse where $a=\sqrt{\dfrac{5}{4}}$ and  $b=\sqrt{\dfrac{5}{4}}$
Eccentricity $e=\sqrt{1-\dfrac{{b}^{2}}{{a}^{2}}}=\sqrt{1-\dfrac{{\left(\sqrt{\dfrac{5}{4}}\right)}^{2}}{{\left(\sqrt{\dfrac{5}{4}}\right)}^{2}}}=\sqrt{1-1}=0$


- Hide questions