0

Forms of equations of a hyperbola - class-XI

Description: forms of equations of a hyperbola
Number of Questions: 84
Created by:
Tags: conic sections mathematics and statistics hyperbola circles and conics section two dimensional analytical geometry-ii maths
Attempted 0/83 Correct 0 Score 0

Find the locus of the point of intersection of the lines $\sqrt 3 x-y-4\sqrt 3\lambda=0$ and $\sqrt 3 \lambda x +\lambda y-4\sqrt{3}=0$ for different values of $\lambda$.

  1. $3x^2-y^2=48$

  2. $y^2-3x^2=24$

  3. $4x^2-3y^2=16$

  4. None of these


Correct Option: A
Explanation:

Let $(h,k)$ be the point of intersection of the given lines. Then,

$\sqrt 3 h-k-4\sqrt 3 \lambda=0$ and $\sqrt3 \lambda h +\lambda k-4\sqrt 3=0$
$\sqrt 3 h-k=4\sqrt 3\lambda$ and $\lambda(\sqrt 3h+k)=4\sqrt 3$
$(\sqrt 3 h-k)\lambda (\sqrt 3h +k)=(4\sqrt 3\lambda)(4\sqrt 3)$
$3h^2-k^2=48$
Hence, the locus of $(h,k)$ is $3x^2-y^2=48$.

If the equation of a hyperbola is $\frac{{{x^2}}}{9} - \frac{{{y^2}}}{{16}} = 1$, then 

  1. traverse axis is along x-axis of length $6$

  2. traverse axis is along y-axis of length $8$

  3. conjugate axis is along y-axis of length $6$

  4. None of these


Correct Option: A

The length of the transverse axis of the hyperbola $3x^2-4y^2=3$ is

  1. $\frac{{8\sqrt 2 }}{{\sqrt 3 }}$

  2. $\frac{{16\sqrt 2 }}{{\sqrt 3 }}$

  3. $\frac {3}{32}$

  4. $\frac {64}{3}$


Correct Option: A

If the eccentricity and length of latus rectum of a hyperbola are $\frac {\sqrt 13}{3}$ and $\frac {10}{3}$ units respectively, then what is the length of the traverse axis?

  1. $\frac {7}{2}$ units

  2. $12$ units

  3. $\frac {15}{2}$ units

  4. $\frac {15}{4}$ units


Correct Option: A

For hyperbola  $\dfrac{x^2}{16}-\dfrac{y^2}{25}=1$ centre is

  1. $(4,4)$

  2. $(5,5)$

  3. $(4,5)$

  4. $(0,0)$


Correct Option: D
Explanation:

Centre of the hyperbola of form $\dfrac{x^2}{a^2}-\dfrac{y^2}{b^2}=1$ has centre at orgin.

Here it is of this form. 
So, centre is at origin $(0,0)$.

For hyperbola  $\dfrac{x^2}{16}-\dfrac{y^2}{25}=1$ distances between two directrices are

  1. $\dfrac{16}{\sqrt{41}}$

  2. $\dfrac{25}{\sqrt{41}}$

  3. $\pm\dfrac{32}{\sqrt{141}}$

  4. $\dfrac{32}{\sqrt{41}}$


Correct Option: D
Explanation:

Given equation of hyperbola $\dfrac {x^2}{16}-\dfrac {y^2}{25}=1$
Here $a^2=16, b^2=25$
Distance between directrix is  $\dfrac{2a^2}{\sqrt{a^2+b^2}} = \dfrac{2\times16}{\sqrt{16+25}} = \dfrac{32}{\sqrt{41}}$

For hyperbola  $\dfrac{x^2}{16}-\dfrac{y^2}{25}=1$
vertices are 

  1. $(4,4)$

  2. $(\pm4,0)$

  3. $(\pm4,4)$

  4. $(0,\pm4)$


Correct Option: B
Explanation:

For the hyperbola of the form $\dfrac{x^2}{a^2}-\dfrac{y^2}{b^2}=1$

Vertices are $(\pm a,0)$
Given equation is $\dfrac {x^2}{16}-\dfrac {y^2}{25}=1$
So, here $a^2=16 \Rightarrow  a=4$
So, the vertices are $(\pm 4,0)$.

For hyperbola  $-\dfrac{x^2}{16}+\dfrac{y^2}{25}=1$ equation of directrices are

  1. $y=\pm\dfrac{16}{\sqrt{41}}$

  2. $y=\pm\dfrac{5}{\sqrt{41}}$

  3. $y=\pm\dfrac{2}{\sqrt{41}}$

  4. $y=\pm\dfrac{25}{\sqrt{41}}$


Correct Option: D
Explanation:

$\dfrac{y^2}{a^2}-\dfrac{x^2}{b^2}=1$


Directrix is at $y=\pm \dfrac{b}{e}$ where $e=\sqrt{\dfrac{b^2}{a^2}+1}$

Here $a^2=25,b^2=16 \implies e=\sqrt{\dfrac{16}{25}+1}=\sqrt{\dfrac{41}{25}}$ 

So equation of directrix is $y=\pm\dfrac{5\sqrt{25}}{\sqrt{41}}=\pm\dfrac{25}{\sqrt{41}}$

For hyperbola  $\dfrac{-x^2}{9}+\dfrac{y^2}{16}=1$, centre is 

  1. $(3,3)$

  2. $(5,5)$

  3. $(0,0)$

  4. $(4,5)$


Correct Option: C
Explanation:

The given hyperbola $\dfrac{-x^2}{9} + \dfrac{y^2}{16} = 1$  or $\dfrac{x^2}{9} - \dfrac{y^2}{16} = - 1$ is a standard form of a conjugate hyperbola. 


By comparing it with it's standard form $\dfrac{x^2}{a^2} - \dfrac{y^2}{b^2} = -1$

We can know $a = 3$ and $b = 4$

For a standard form of a conjugate hyperbola, the center lies at origin at $(0,0)$. Hence the correct option is $C$.

For hyperbola  $\dfrac{x^2}{16}-\dfrac{y^2}{25}=1$, focus is is on 

  1. x-axis

  2. y-axs

  3. z-axis

  4. none


Correct Option: A
Explanation:

The given hyperbola $\dfrac{x^2}{16} - \dfrac{y^2}{25} = 1$ is a standard form of hyperbola. 


By comparing it with standard form $\dfrac{x^2}{a^2} - \dfrac{y^2}{b^2} = 1$

We can know $a = 4$ and $b = 5$

For a standard form of hyperbola, the foci lie on the transverse axis. $i.e.$ $x$ - axis. one each side of the hyperbola, at $(ae,0)$ and $(-ae,0)$ respectively.

For hyperbola  $-\dfrac{x^2}{16}+\dfrac{y^2}{25}=1$ vertices are 

  1. $(\pm4,0)$

  2. $(4,\pm5)$

  3. $(0,\pm5)$

  4. $(5,\pm5)$


Correct Option: C
Explanation:

Since  constant term is negative, so its major axis will be on $y$ axis.

Now vertices are $(0,b)$ and $(0.-b)$.  
Hence, answer is  $(0,5)$ and $(0,-5)$.

For hyperbola  $-\dfrac{x^2}{9}+\dfrac{y^2}{16}=1$, focus is is on 

  1. x-axis

  2. y-axis

  3. z-axis

  4. none


Correct Option: B
Explanation:

The given hyperbola $\dfrac{-x^2}{9} + \dfrac{y^2}{16} = 1$  or $\dfrac{x^2}{9} - \dfrac{y^2}{16} = - 1$ is a standard form of a conjugate hyperbola. 


By comparing it with it's standard form $\dfrac{x^2}{a^2} - \dfrac{y^2}{b^2} = -1$

We can know $a = 3$ and $b = 4$

For a standard form of a conjugate hyperbola, the foci lie on its transverse axis. $i.e.$ $y$ - axis. one each side of the hyperbola, at $(0, be)$ and $(0,-be)$ respectively.

The foci of the hyperbola $4{ x }^{ 2 }-9{ y }^{ 2 }-1=0$ are

  1. $\left( \pm \sqrt { 13 } ,0 \right) $

  2. $\left( \pm \dfrac { \sqrt { 13 } }{ 6 } ,0 \right) $

  3. $\left( 0,\pm \dfrac { \sqrt { 13 } }{ 6 } \right) $

  4. None of the above


Correct Option: B
Explanation:

The given equation of hyperbola can be re-written as,

$\dfrac { x^{ 2 } }{ \left( \dfrac { 1 }{ 2 }  \right) ^{ 2 } } -\dfrac { { y }^{ 2 } }{ \left( \dfrac { 1 }{ 3 }  \right) ^{ 2 } } =1$
So, the hyperbola has x-axis as the transverse axis, with $a=\dfrac { 1 }{ 2 } $
and $b=\dfrac { 1 }{ 3 }$ 

And, $e=\displaystyle \sqrt { 1+\dfrac { b^{ 2 } }{ a^{ 2 } }  }$

 $ =\displaystyle \sqrt { 1+\dfrac { 4 }{ 9 }  } =\dfrac { \sqrt { 13 }  }{ 3 }$ 

$\therefore$ Focii $=(\pm ae,0)=\left(\pm \dfrac { \sqrt { 13 }  }{ 6 } ,0\right)$
Hence, B is correct.

For hyperbola  $-\dfrac{(x-1)^2}{3}+\dfrac{(y+2)^2}{16}=1$, vertices are 

  1. $(2,3)$

  2. $(\pm\sqrt3,3)$

  3. $(2,\pm3)$

  4. $(1,2)$,$(1,-6)$


Correct Option: D
Explanation:

Hyperbola $\dfrac{y^2}{a^2}-\dfrac{x^2}{b^2}=1$

It has center at $(0,0)$ and vertex at $(0,\pm a)$.
For hyperbola $\dfrac{(y+2)^{2}}{16}-\dfrac{(x-1)^{2}}{3}=1$
Its center shifted to $(1,-2)$.
So, vertex will also shift by $(1,-2)$. 
So, vertex is $(0,\pm a)+(1,-2)=(0,\pm 4)+(1,-2) $
$\Rightarrow  (1,2)$ and $(1,-6)$

For hyperbola  $-\dfrac{(x-1)^2}{3}+\dfrac{(y+2)^2}{16}=1$ centre is 

  1. $(1,-2)$

  2. $(0,0)$

  3. $(1,-1)$

  4. $(2,-2)$


Correct Option: A
Explanation:

The given hyperbola is $-\dfrac{(x-1)^2}{3} + \dfrac{(y+2)^2}{16} = 1$ is a conjugate hyperbola.


It can be written as $\dfrac{(x-1)^2}{3} - \dfrac{(y+2)^2}{16} = -1$  ......$(1)$

Now let $x-1 = X$ and $y+2 = Y$

Putting values of $x-1$ and $y+2$ in eq. $(2)$ we get,

$\rightarrow  \ \dfrac{(X)^2}{3} - \dfrac{(Y)^2}{16} = -1$  ....$(2)$

We can see the eq$(2)$ is a standard form of conjugate hyperbola and it's center lies at origin $(0,0)$

So $X =0 , Y = 0$ is the center of the hyperbola given in eq.$(2)$

$\rightarrow$ $ X = x-1 = 0$ or $x = 1$

$\rightarrow$ $ Y = y+2 = 0$ or $y = -2$

Hence center of the given hyperbola in eq. $(1)$ is $(1,-2)$. So correct option is $A$.

Find the equation to the hyperbola of given length of transverse axis $6$ and the join of centre and focus is bisected by vertex.

  1. $3x^{2} - y^{2} = 27$.

  2. $3x^{2} + y^{2} = 27$.

  3. $x^{2} - y^{2} = 27$.

  4. None of these


Correct Option: A

The eccentricity of the hyperbola $16x^2-9y^2=1$ is

  1. $\dfrac{3}{5}$

  2. $\dfrac{5}{3}$

  3. $\dfrac{4}{5}$

  4. $\dfrac{5}{4}$


Correct Option: B
Explanation:
Equation of hyperbola: $16x^2-9y^2=1$
can be written as $\cfrac{x^2}{\frac{1}{16}}+\cfrac{y^2}{\frac{1}{9}}=1$
$e^2=1+\cfrac{b^2}{a^2}=1+\cfrac{16}{9}=\cfrac{25}9$
or, $e=\cfrac53$
Hence, B is the correct option.

For hyperbola  $-\dfrac{x^2}{16}+\dfrac{y^2}{25}=1$ distance between directrices is 

  1. $\dfrac{50}{\sqrt{41}}$

  2. $\dfrac{16}{\sqrt{41}}$

  3. $\dfrac{25}{\sqrt{41}}$

  4. $\dfrac{32}{\sqrt{41}}$


Correct Option: A
Explanation:
Given equation is $-\dfrac {x^2}{16}+\dfrac {y^2}{25}=1$
$\Rightarrow \dfrac {y^2}{25}-\dfrac {x^2}{16}=1$
Distance between directrix is   $\dfrac{2a}{\sqrt{a^2+b^2}}$
Here $a=25, b=16$
So, answer is $= \dfrac{50}{\sqrt{41}}$.

For hyperbola  $-\dfrac{(x-1)^2}{3}+\dfrac{(y+2)^2}{16}=1$ centre is 

  1. $(-1,-2)$

  2. $(1,-1)$

  3. $(1,-2)$

  4. $(0,0)$


Correct Option: C
Explanation:

The given hyperbola is $-\dfrac{(x-1)^2}{3} + \dfrac{(y+2)^2}{16} = 1$ is a conjugate hyperbola.


It can be written as $\dfrac{(x-1)^2}{3} - \dfrac{(y+2)^2}{16} = -1$  ......$(1)$

Now let $x-1 = X$ and $y+2 = Y$

Putting values of $x-1$ and $y+2$ in eq. $(2)$ we get,

$\rightarrow  \ \dfrac{(X)^2}{3} - \dfrac{(Y)^2}{16} = -1$  ....$(2)$

We can see the eq$(2)$ is a standard form of conjugate hyperbola and it's center lies at origin $(0,0)$

So $X =0 , Y = 0$ is the center of the hyperbola given in eq.$(2)$

$\rightarrow$ $ X = x-1 = 0$ or $x = 1$

$\rightarrow$ $ Y = y+2 = 0$ or $y = -2$

Hence center of the given hyperbola in eq. $(1)$ is $(1,-2)$. So correct option is $C$.

The equation of the conjugate axis of the hyperbola $\dfrac {(y - 2)^{2}}{9} - \dfrac {(x + 3)^{2}}{16} = 1$ is

  1. $y = 2$

  2. $y = 6$

  3. $y = 8$

  4. $y = 3$


Correct Option: A
Explanation:

The equation at the conjugate axis of the hyperbola

$\frac{{{{\left( {y - 2} \right)}^2}}}{9} - \frac{{{{\left( {x + 3} \right)}^2}}}{9} = 1$ 
There for,
      $y-2=0$
      $y=2$
 option (A) is correct answer

An ellipse and a hyperbola have the same principle axes. From a point on the ellipse, tangents are drawn to the hyperbola . then  the chord contact of these tangents touches the ellipse.

  1. True

  2. False


Correct Option: A

The eccentricity of the conic represented by$2{x}^{2}+5xy+2{y}^{2}+11x-7y-4=0$ is

  1. $\dfrac {\sqrt {10}}{3}$

  2. $\dfrac {\sqrt {10}}{4}$

  3. $\dfrac {5}{4}$

  4. $\dfrac {3}{5}$


Correct Option: A

The equation $\dfrac{x^{2}}{29 -p} + \dfrac{y^{2}}{4 -p} =1(p\neq4, 29)$ represents - 

  1. an ellipse if $p$ is any constant greater than $4$

  2. hyperbola if $p$ is any constant between $4$ and $29$.

  3. a rectanglar hyperbola is $p$ is any constant greater than $29$.

  4. no real curve is $p$ is less than $29$.


Correct Option: B
Explanation:
Equation of Hyperbola is $\dfrac{x^2}{a^2}-\dfrac{y^2}{b^2}=1$

if p lies between $4$ and $29$ then coefficient of $y^2$  is negative and coefficient of $x^2$ is positive

Hence, it satisfies the equation of Hyperbola between $4$ and $29$

Which of the following equations in parametric form can represent a hyperbolic profile, where $t$ is a parameter.

  1. $x=\dfrac { a }{ 2 } \left( t+\dfrac { 1 }{ t } \right)$ & $y=\dfrac{b}{2}\left( t-\dfrac { 1 }{ t } \right)$

  2. $\dfrac{tx}{a}-\dfrac{y}{b}+t=0$ & $\dfrac{x}{a}-\dfrac{ty}{b}-1=0$

  3. $x={e}^{t}+{e}^{-t}$ & $x={e}^{t}-{e}^{-t}$

  4. ${x}^{2}-6=2\cos{t}$ & ${y}^{2}+2=4{\cos}^{2}\dfrac{t}{2}$


Correct Option: A
Explanation:
$(a)$ We have $x=\dfrac{a}{2}\left(t+\dfrac{1}{t}\right)$ and $y=\dfrac{b}{2}\left(t-\dfrac{1}{t}\right)$

$\Rightarrow\,\dfrac{2x}{a}=t+\dfrac{1}{t}$ and $\dfrac{2y}{b}=t-\dfrac{1}{t}$

$\Rightarrow\,{\left(\dfrac{2x}{a}\right)}^{2}={\left(t+\dfrac{1}{t}\right)}^{2}$ and ${\left(\dfrac{2y}{b}\right)}^{2}={\left(t-\dfrac{1}{t}\right)}^{2}$

$\Rightarrow\,\dfrac{4{x}^{2}}{{a}^{2}}={t}^{2}+\dfrac{1}{{t}^{2}}+2$ and $\dfrac{4{y}^{2}}{{b}^{2}}={t}^{2}+\dfrac{1}{{t}^{2}}-2$

$\Rightarrow\,\dfrac{4{x}^{2}}{{a}^{2}}-\dfrac{4{y}^{2}}{{b}^{2}}={t}^{2}+\dfrac{1}{{t}^{2}}+2-{t}^{2}-\dfrac{1}{{t}^{2}}+2$

$\Rightarrow\,\dfrac{4{x}^{2}}{{a}^{2}}-\dfrac{4{y}^{2}}{{b}^{2}}=4$

$\Rightarrow\,\dfrac{{x}^{2}}{{a}^{2}}-\dfrac{{y}^{2}}{{b}^{2}}=1$ is in parametric form can represents a hyperbolic profile.

$(b)\dfrac{tx}{a}-\dfrac{y}{b}+t=0$ and $\dfrac{x}{a}-\dfrac{ty}{b}-1=0$

$\Rightarrow\,\dfrac{tx}{a}+t=\dfrac{y}{b}$ and $\dfrac{x}{a}-1=\dfrac{ty}{b}$

$\Rightarrow\,t\left(\dfrac{x}{a}+1\right)=\dfrac{y}{b}$ and $\dfrac{b}{y}\left(\dfrac{x}{a}-1\right)=t$

$\Rightarrow\,t\left(\dfrac{x+a}{a}\right)=\dfrac{y}{b}$ and $t=\dfrac{b}{y}\left(\dfrac{x-a}{a}\right)$

$\Rightarrow\,\dfrac{b}{y}\left(\dfrac{x-a}{a}\right)\left(\dfrac{x+a}{a}\right)=\dfrac{y}{b}$ 

$\Rightarrow\,\dfrac{b}{y}\left(\dfrac{{x}^{2}-{a}^{2}}{{a}^{2}}\right)=\dfrac{y}{b}$ 

$\Rightarrow\,\dfrac{{x}^{2}-{a}^{2}}{{a}^{2}}=\dfrac{{y}^{2}}{{b}^{2}}$ 

$\Rightarrow\,\dfrac{{x}^{2}}{{a}^{2}}-1=\dfrac{{y}^{2}}{{b}^{2}}$ 

$\Rightarrow\,\dfrac{{x}^{2}}{{a}^{2}}-\dfrac{{y}^{2}}{{b}^{2}}=1$ is in parametric form can represents a hyperbolic profile.

$(c)x={e}^{t}+{e}^{-t}$ and $x={e}^{t}-{e}^{-t}$

$\Rightarrow\,{x}^{2}={e}^{2t}+{e}^{-2t}+2{e}^{t}{e}^{-t}$ and $ {x}^{2}={e}^{2t}+{e}^{-2t}-2{e}^{t}{e}^{-t}$

$\Rightarrow\,{x}^{2}={e}^{2t}+{e}^{-2t}+2$ and ${x}^{2}={e}^{2t}+{e}^{-2t}-2$

$\Rightarrow\,{x}^{2}-{x}^{2}={e}^{2t}+{e}^{-2t}+2-{e}^{2t}-{e}^{-2t}+2=4$ is not in parametric form can represents a hyperbolic profile.

$(d){x}^{2}-6=2\cos{t}$ and ${y}^{2}+2=4{\cos}^{2}{\dfrac{t}{2}}$

$\Rightarrow\,{x}^{2}=2\cos{t}+6$ and ${y}^{2}=4{\cos}^{2}{\dfrac{t}{2}}-2$

$\Rightarrow\,{x}^{2}-{y}^{2}=2\cos{t}+6-4{\cos}^{2}{\dfrac{t}{2}}+2$ 

$\Rightarrow\,{x}^{2}-{y}^{2}=2\left(2{\cos}^{2}{\dfrac{t}{2}}-1\right)+8-4{\cos}^{2}{\dfrac{t}{2}}$ 

$\Rightarrow\,{x}^{2}-{y}^{2}=4{\cos}^{2}{\dfrac{t}{2}}-2+8-4{\cos}^{2}{\dfrac{t}{2}}$ 

$\Rightarrow\,{x}^{2}-{y}^{2}=6$ is in parametric form can represents a hyperbolic profile.


The transverse axis of a hyperbola is of length $2a$ and a vertex divides the segment of the axis between the centre and the corresponding focus in the ratio $2:1$. The equation of the hyperbola is

  1. $4x^2-5y^2=4a^2$

  2. $4x^2-5y^2=5a^2$

  3. $5x^2-4y^2=4a^2$

  4. $5x^2-4y^2=5a^2$


Correct Option: D
Explanation:

We have given  $\cfrac{a}{ae-a}=2\Rightarrow e=\cfrac{3}{2}$
Using $e^2=1+\cfrac{b^2}{a^2}$
$\cfrac{9}{4}=1+\cfrac{b^2}{a^2}\Rightarrow b^2=\cfrac{5}{4}a^2$
Hence required hyperbola is $\cfrac{x^2}{a^2}-\cfrac{y^2}{b^2}=1$
$\cfrac{x^2}{a^2}-\cfrac{y^2}{\frac{5}{4}a^2}=1$
$\Rightarrow 5x^2-4y^2=5a^2$
Hence option 'D' is correct.

The equation of the hyperbola whose directrix is $2x + y = 1$,corresponding focus is $(1, 1)$ and eccentricity $\sqrt { 3 }$, is given by 

  1. $7 x ^ { 2 } + 12 x y - 2 y ^ { 2 } - 2 x + 4 y - 7 = 0$

  2. $2 x ^ { 2 } + 12 x y - 7 y ^ { 2 } - 2 x + 14 y - 7 = 0$

  3. $7 x ^ { 2 } - 12 x y + 2 y ^ { 2 } - 2 x + 14 y - 22 = 0$

  4. $7 x ^ { 2 } + 12 x y - 2 y ^ { 2 } - 2 x - 14 y - 22 = 0$


Correct Option: A
Explanation:
Let$ P(x, y)$ is any point on the hyperbola.
given, focus of parabola is $S(1,1)$.
equation of directrix is $2x + y = 1$
From P draw PM perpendicular to the directrix then $PM = (2x + y – 1)/√(2² + 1²) = (2x + y – 1)/√5$
Also from the definition of the hyperbola, we have
$SP/PM = e ⇒ SP = ePM$
$⇒ √{(x–1)² + (y–1)²} = √3{(2x + y – 1)/√5}$
$⇒ (x – 1)² + (y – 1)² = 3 (2x + y – 1)²/5$
$⇒ 5[(x² – 2x + 1) + (y² –2y + 1)] = 3(4x² + y² + 1 + 4xy – 4x – 2y)$
$⇒5x² - 10x + 5 + 5y² - 10y + 5 = 12x² + 3y² + 3 + 12xy - 12x - 6y $
$⇒7x² + 2y² + 12xy - 2x + 4y - 7 = 0$
hence, equation of hyperbola is $7x² - 2y² + 12xy - 2x + 4y - 7 = 0$

The equation of the hyperbola whose foci are $(8,3)$ and $(0,3)$ and eccentricity$=\cfrac { 4 }{ 3 } $ is

  1. $ 7{\left(x-4 \right ) }^{2} -9{\left(y-3 \right) }^{2}=63$

  2. ${ 7x }^{ 2 }-{ 9y }^{ 2 }=63$

  3. $ 9{ \left( x-4 \right) }^{ 2 }-9{ \left( y-3 \right) }^{ 2 }=63$

  4. $7{ \left( x+4 \right) }^{ 2 }-9{ \left( y+3 \right) }^{ 2 }=63$


Correct Option: A
Explanation:

The centre of the hyperbola is the mid-point of the line joining the two
foci. So, the coordinates of the centre are $\left( \cfrac { 8+0 }{ 2 },\cfrac { 3+3 }{ 2 }  \right) \quad $ i.e $(4,3)$
Let $2a,2b$ be the length of the transverse and conjugate axes and let $e$ be the
eccentricity. Then, the equation of the hyperbola is
$\cfrac { {\left( x-4 \right)  }^{ 2 } }{ { a }^{ 2 } } -\cfrac { { \left( y-3 \right)  }^{ 2 } }{ { b }^{ 2 } } =1\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot (i)$
Distance between the two foci$ = 2ae$
$\Rightarrow \sqrt { { \left( 8-0 \right)  }^{ 2 }+{ \left( 3-3 \right)  }^{ 2 } } =2ae$
$\Rightarrow ae=4\Rightarrow a=3$
$\therefore\quad { b }^{ 2 }={ a }^{ 2 }\left( { e }^{ 2 }-1 \right) \Rightarrow {b }^{ 2 }=9\left( \cfrac { 16 }{ 9 } -1 \right) =7$
Substituting the value of $a$ and $b$ in $(i)$, we find that the equation of the hyperbola is
$\cfrac{ { \left( x-4 \right)  }^{ 2 } }{ 9 } +\cfrac { { \left( y-3 \right)  }^{ 2 } }{ 7 } =1\quad or\quad 7{ \left( x-4 \right)  }^{ 2 }-9{ \left( y-3 \right)  }^{ 2 }=63$
Hence, option 'A' is correct.

The equation of the hyperbola whose directrix is $x + 2y = 1$, focus is $(2, 1)$ and eccentricity $2$ is

  1. $x^2 + 16 xy - 11y^2 - 12 x + 6y + 21 = 0$

  2. $x^2 - 16 xy - 11y^2 - 12 x + 6y + 21 = 0$

  3. $x^2 - 4 xy - y^2 - 12 x + 6y + 21 = 0$

  4. none of these


Correct Option: B
Explanation:

Using Definition of hyperbola
$PS^2=e^2\cdot PM^2$
$(x-2)^2+(y-1)^2=2^2\left(\cfrac{x+2y-1}{\sqrt{5}}\right)^2$
$5(x^2+y^2-4x-2y+5)=4(x^2+4y^2+1+4xy-2x-4y)$
$\Rightarrow x^2 - 16 xy - 11y^2 - 12 x + 6y + 21 = 0$
Hence, option 'B' is correct.

If ${ e } _{ 1 }$ is the eccentricity of the ellipse $\cfrac { { x }^{ 2 } }{ 16 } +\cfrac { { y }^{ 2 } }{ 25 } =1$ and ${ e } _{ 2 }$ is the eccentricity of the hyperbola passing through the foci of the ellipse and ${ e } _{ 1 }.{ e } _{ 2 }=1$, then the equation of the hyperbola, is :

  1. $\cfrac { { x }^{ 2 } }{ 9 } -\cfrac { { y }^{ 2 } }{ 16 } =1$

  2. $\cfrac { { x }^{ 2 } }{ 16 } -\cfrac { { y }^{ 2 } }{ 9 } =-1$

  3. $\cfrac { { x }^{ 2 } }{ 9 } -\cfrac { { y }^{ 2 } }{ 25 } =1$

  4. none of these


Correct Option: B
Explanation:

We have ${ e } _{ 1 }=\sqrt { 1-\cfrac { 16 }{ 25 }  } =\cfrac { 3 }{ 5 } $
$\because \quad { e } _{ 1 }{ e } _{ 2 }=1\Rightarrow { e } _{ 2 }=\cfrac { 5 }{ 3 } $
Clearly y-axis is transverse axis of the ellipse.
Thus, coordinates of foci of the ellipse are $(0,\pm b e _1)$ or $\left( 0,\pm 3 \right) $.
Let the equation of hyperbola is, $\dfrac{y^2}{b^2}-\cfrac{x^2}{a^2}=1$ ..... $(1)$
Since, hyperbola passes through foci of the ellipse
$\Rightarrow b^2=9$ and also $a^2=b^2(e^2-1)=9(25/9-1)=16$
Therefore, the required hyperbola is, $\cfrac{x^2}{16}-\cfrac{y^2}{9}=-1$
Hence, option 'B' is correct.

Equation of the hyperbola whose vertices are at ($\pm3, 0$) and focii at ($\pm5, 0$) is

  1. $16x^2 - 9y^2 = 144$

  2. $9x^2 - 16y^2 = 144$

  3. $25x^2 - 9y^2 = 255$

  4. $9x^2 - 25y^2 = 81$


Correct Option: A
Explanation:

Given $a=3$ and $ae=5\Rightarrow e=\cfrac{5}{3}$
Using $e^2=1+\cfrac{b^2}{a^2}$
$\cfrac{25}{9}=1+\cfrac{b^2}{9}\Rightarrow b^2=16$
Therefore required hyperbola is, $\cfrac{x^2}{9}-\cfrac{y^2}{16}=1$
$\Rightarrow 16x^2-9y^2=144$
Hence, option 'A' is correct.

The equation of the conic with focus at $(1, -1)$, directrix along $x - y + 1= 0$ and with eccentricity $\sqrt{2}$ is

  1. $x^2 - y^2 = 1$

  2. $xy = 1$

  3. $2xy - 4x + 4y + 1 = 0$

  4. $2xy + 4x - 4y - 1 = 0$


Correct Option: C
Explanation:

Using Definition of hyperbola
$PS^2=e^2\cdot PM^2$
$(x-1)^2+(y+1)^2=2\left(\cfrac{x-y+1}{\sqrt{2}}\right)^2$
$(x^2+y^2-2x+2y+2)=(x^2+y^2+1-2xy+2x-2y)$
$\Rightarrow 2 xy - 4 x + 4y + 1 = 0$
Hence, option 'C' is correct.

The tangent of a point $P$ on the hyperbola $\dfrac {x^{2}}{a^{2}}-\dfrac {y^{2}}{b^{2}}=1$ passes through the point $(0,\ -b)$ and the normal at $P$ pases through the point $(2a\sqrt {2},\ 0)$. Then the eccentricity of the hyperbola is   

  1. $2$

  2. $\sqrt {2}$

  3. $3$

  4. $\sqrt {3}$


Correct Option: A

Find the equation of the hyperbola whose directrix is $2x+y=1$, focus $(1,2)$ and eccentricity $\sqrt{3}$

  1. $7x^2-2y^2 +12xy-2x+14y-22=0$

  2. $7x^2-2y^2 +2xy-2x+14y-22=0$

  3. $7x^2-2y^2 +xy-14x+2y-22=0$

  4. none of above


Correct Option: A

Eccentricity of the hyperbola satisfying the differential equation $2xy\dfrac{dy}{dx}=x^2+y^2$ and passing through $(2,1)$ is

  1. $\sqrt2$

  2. $2\sqrt2$

  3. $3\sqrt2$

  4. $5\sqrt2$


Correct Option: A

Find the equation to the hyperbola of given transverse xis (2a) whose vertex bisects the distance between the centre and the focus

  1. $3x^2-2y^2=12a^2$

  2. $3x^2-y^2=a^2$

  3. $3x^2-y^2=3a^2$

  4. $3x^2-y^2=2a^2$


Correct Option: A

The ecentricity of the hyperbola passing through the origin and whose asymptotes are given by straight lines $y=3x-1$ and $x+3y=3$, is

  1. $\sqrt{2}$

  2. $3$

  3. $2\sqrt{2}$

  4. $\dfrac{3}{\sqrt{2}}$


Correct Option: A

A hyperbola passes through the points $(3, 2)$ and $(-17, 12)$ and has its centre at origin and transverse axis is along $x-axis$. The length of its transverse axis is:

  1. $2$

  2. $4$

  3. $6$

  4. $None\ of\ these$


Correct Option: A

If a hyperbola passes through the focii of the ellipse$\dfrac { { x }^{ 2 } }{ 25 } +\dfrac { { y }^{ 2 } }{ 16 } =1.$ Its transverse and conjugate axes coincide respectively with the major and minor axes of the ellipse and if the product of eccentricities hyperbola and ellipse is 1, then

  1. the equation of hyperbola is $\dfrac { x^{ 2 } }{ 9 } -\dfrac { { y }^{ 2 } }{ 16 } =1\ \quad \quad $

  2. the equation of hyperbola is $\dfrac { x^{ 2 } }{ 9 } -\dfrac { { y }^{ 2 } }{ 25 } =1\ \quad \quad $

  3. focus of hyperbola is (5,0)

  4. focus of hyperbola is $\left( 5\sqrt { 3, } 0 \right) $


Correct Option: A
Explanation:
Formula,

$e^2=1-\dfrac{b^2}{a^2}$

$=1-\dfrac{16}{25}$

$\therefore e=\dfrac{3}{5}$

$e _2 \times e =1$

$\Rightarrow e _2=\dfrac{5}{3}$

Equation,

$\dfrac{x^2}{a^2}-\dfrac{y^2}{b^2}=1$

Given,

$\Rightarrow (3,0)$

$\dfrac{3^2}{a^2}=1$

$\Rightarrow a^2=9$

we have,

$e _2^2=1+\dfrac{b^2}{a^2}$

$\dfrac{25}{9}=1+\dfrac{b^2}{9}$

$\Rightarrow b^2=16$

$\dfrac{x^2}{9}-\dfrac{y^2}{16}=1$

Hence the required equation.

The hyperbola $\displaystyle \frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}}=1$ passes through the point $\displaystyle \left ( 2, : 3 \right )$ and has the eccentricity $2$. Then the transverse axis of the hyperbola has the length

  1. $1$

  2. $3$

  3. $2$

  4. $4$


Correct Option: C
Explanation:

Given hyperbola is,  $\displaystyle \frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}}=1$
It passes through $(2,3)$
$\cfrac{4}{a^{2}} - \cfrac{9}{b^{2}}=1 ..(1)$
Also eccentricity is $2$,
$\Rightarrow e^2=1+\cfrac{b^2}{a^2}=4\Rightarrow \cfrac{b^2}{a^2}=3   ..(2)$
Solving (1) and (2) we get $a=1, b=\sqrt{3}$
Hence, length of transverse axis is $=2a=2$

If in a hyperbola the eccentricity is $\displaystyle \sqrt{3}$, and the distance between the foci is $9$ then the equation of the hyperbola in the standard form is

  1. $\displaystyle \dfrac{x^{2}}{\left ( \dfrac{\sqrt{3}}{2} \right )^{2}} - \dfrac{y^{2}}{\left ( \sqrt{\dfrac{3}{2}} \right )^{2}} = 1$

  2. $\displaystyle \dfrac{x^{2}}{\left ( \dfrac{3 \sqrt{3}}{2} \right )^{2}} - \dfrac{y^{2}}{\left ( \dfrac{3\sqrt{3}}{\sqrt{2}} \right )^{2}} = 1$

  3. $\displaystyle \dfrac{x^{2}}{\left ( \dfrac{3\sqrt{3}}{\sqrt{2}} \right )^{2}} - \dfrac{y^{2}}{\left ( \dfrac{3\sqrt{2}}{2} \right )^{2}} = 1$

  4. none of these


Correct Option: B
Explanation:

Given eccentricity of the hyperbola $e=\sqrt{3}$
and distance between focii is 9. $\Rightarrow 2ae=9\Rightarrow a=\cfrac{3\sqrt{3}}{2}$
also $b^2=a^2(e^2-1)=\cfrac{27}{4}(3-1)=\cfrac{27}{2}\Rightarrow b=\cfrac{3\sqrt{3}}{\sqrt{2}}$
Hence equation of required hyperbola is,
$\cfrac{x^2}{\left(\cfrac{3\sqrt{3}}{2}\right )^2}-\cfrac{y^2}{\left (\cfrac{3\sqrt{3}}{\sqrt{2}}\right )^2}=1$
Hence, option 'B' is correct.

If any point on a hyperbola has the coordinates $\displaystyle \left ( 5 \tan \phi , : 4 \sec \phi \right )$ then the ecentricity of the hyperbola is

  1. $\displaystyle \frac{5}{4}$

  2. $\displaystyle \frac{\sqrt{41}}{5}$

  3. $\displaystyle \frac{25}{16}$

  4. $\displaystyle \frac{\sqrt{41}}{4}$


Correct Option: D
Explanation:

We have   $x=5\tan\phi, y=4\sec\phi$
Eliminating $\phi$ we get
$\cfrac{y^2}{16}-\cfrac{x^2}{25}=\sec^2\phi-\tan^2\phi=1$
This is a hyperbola. Therefore, its eccentricity $= \sqrt{1+\cfrac{25}{16}}=\cfrac{\sqrt{41}}{4}$

If the eccentricity of the hyperbola $\displaystyle \frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}} = 1$ is $e$ then the eccentricity of the hyperbola $\displaystyle \frac{y^{2}}{b^{2}} - \frac{x^{2}}{a^{2}} = 1$ is :

  1. $e$

  2. $\displaystyle \frac{e}{\sqrt{e^{2} - 1}}$

  3. $\displaystyle e \sqrt{e^{2} - 1}$

  4. $\displaystyle e^{2} - e$


Correct Option: B
Explanation:

For hyperbola $\displaystyle \frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}} = 1$
eccentricity $\Rightarrow e=\sqrt{1+\cfrac{b^2}{a^2}}\Rightarrow \cfrac{b^2}{a^2}=e^2-1$
For hyperbola $\displaystyle \frac{x^{2}}{b^{2}} - \frac{y^{2}}{a^{2}} = 1$
Required eccentricity $ e'=\sqrt{1+\cfrac{a^2}{b^2}}=\sqrt{1+\cfrac{1}{e^2-1}}=\displaystyle \cfrac{e}{\sqrt{e^{2} - 1}}$

Let $P(6, 3)$ be a point on the hyperbola $\dfrac{x^2}{a^2}-\dfrac{y^2}{b^2}=1$. If the normal at the point P intersects the x-axis at $(9, 0)$, then the eccentricity of the hyperbola is?

  1. $\sqrt{\dfrac{5}{2}}$

  2. $\sqrt{\dfrac{3}{2}}$

  3. $\sqrt{2}$

  4. $\sqrt{3}$


Correct Option: A

A hyperbola, having the transverse axis of length $\displaystyle 2\sin \theta$, is confocal with the ellipse $\displaystyle 3x^{2}+4y^{2}=12$, then its equation is

  1. $\displaystyle x^{2}\text{cosec} ^{2}\theta -y^{2}\sec ^{2}\theta=1$

  2. $\displaystyle x^{2} \sec ^{2}\theta -y^{2}\text{cosec}^{2}\theta=1$

  3. $\displaystyle x^{2} \sin ^{2}\theta -y^{2}\cos ^{2}\theta=1$

  4. $\displaystyle x^{2} \cos ^{2}\theta -y^{2}\sin ^{2}\theta=1$


Correct Option: A
Explanation:

Given ellipse may be written as $\cfrac{x^2}{4}+\cfrac{y^2}{3}=1$
$\Rightarrow a^2=4, b^2=3$

$\Rightarrow e= \sqrt{1-\dfrac{3}{4}}=\cfrac{1}{2}$
$\therefore $ Focus of the ellipse $=(\pm ae,0)=(\pm 1, 0)$
Given required hyperbola is confocal to the ellipse
Let $a',b',e'$ are transverse axis, conjugate axis an eccentricity of the hyperbola
$a'e'=1\Rightarrow \sin\theta. e'=1\Rightarrow e'=\cfrac{1}{\sin\theta}$
Using $b'^2=a'^2(e^2-1)\Rightarrow b'^2=1-\sin^2\theta=\cos^2\theta$
Therefore required hyperbola is $\cfrac{x^2}{a'^2}-\cfrac{y^2}{b'^2}=1$
$\Rightarrow \cfrac{x^2}{\sin^2\theta}-\cfrac{y^2}{\cos^2\theta}=1$
$\Rightarrow x^2 \text{cosec}^2\theta-y^2\sec^2\theta=1$

Hence, option 'A' is correct.

Consider the hyoerbola ${ 3x^{2} }-{ y }^{ 2 }-{ 24x } + { 4y } { 4 } = 0$

  1. $its centre is \left(4,2\right)$

  2. $its centre is \left(2,4\right)$

  3. $length of latus rectum = 24$

  4. $length of latus rectum = 12$


Correct Option: A

$y=mx+c$ is tangent to hyperbola find $c$ if hyperbola eqn is

  1. $\dfrac{{x}^{2}}{{a}^{2}}-\dfrac{{y}^{2}}{{b}^{2}}=1$$a>b$

  2. $\dfrac{{x}^{2}}{{a}^{2}}-\dfrac{{y}^{2}}{{b}^{2}}=1$$b>a$

  3. $\dfrac{{-x}^{2}}{{a}^{2}}-\dfrac{{y}^{2}}{{b}^{2}}=1$$a>b$

  4. $\dfrac{{-x}^{2}}{{a}^{2}}-\dfrac{{y}^{2}}{{b}^{2}}=1$$b>a$


Correct Option: A

The focal length of the hyperbola $x^2-3y^2-4x-6y-11=0$, is?

  1. $4$

  2. $6$

  3. $8$

  4. $10$


Correct Option: A

Consider the hyperbola $3{x^2} - {y^2} - 24x + 4y - 4 = 0$

  1. Its centre is (4, 2)

  2. its centre is (2, 4)

  3. Length of latus rectum= 24

  4. length of latus rectum=12


Correct Option: B

Find Directrix, foci and eccentricity of the conics:

$\displaystyle x^{2}+2x-y^{2}+5= 0$

  1. Directrices $\displaystyle y= \pm \sqrt{2}$

  2. foci $\displaystyle \left ( -1,\pm 2\sqrt{2} \right )$ 

  3. $e= \sqrt{2}$

  4. $e=2$


Correct Option: A,B,C
Explanation:

$\displaystyle x^{2}+2x-y^{2}+5= 0$
$\displaystyle x^{2}+2x+1-y^{2}= -4$
$\displaystyle (x+1)^2-y^{2}= -4$
$\displaystyle \frac{y^2}{4}-\frac{(x+1)^2}{4}= 1$
Clearly this equation of rectangular hyperbola with $y-$axis as major axis
eccentricity $e = \sqrt{2}$ directrices $:y = \cfrac{a}{e}=\pm \sqrt{2}$ foci $(-1,\pm ae)=(-1,\pm 2\sqrt{2})$

The equation of a hyperbola whose directrix is $2x+y=1$ and focus is at $(1,2)$ with $e=\sqrt{3}$ is :

  1. $7x^2+12xy+2y^2-2x+14y-22=0$

  2. $7x^2+12xy-2y^2-2x+14y-22=0$

  3. $7x^2+12xy-2y^2-2x-14y-22=0$

  4. $7x^2+12xy+2y^2+2x+14y-22=0$


Correct Option: A

Let the eccentricity of the hyperbola $  \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1  $ be reciprocal to that of the ellipse $  x^{2}+4 y^{2}=4 .  $ If thehyperbola passes through a focus of the ellipse, then __________________.

  1. (A) the equation of the hyperbola is $ \frac{x^{2}}{3}-\frac{y^{2}}{2}=1 $

  2. (B) a focus of the hyperbola is $ (2,0) $

  3. (C) the eccentricity of the hyperbola is $ \sqrt{\frac{5}{3}} $

  4. (D) the equation of the hyperbola is $ x^{2}-3 y^{2}=3 $


Correct Option: D

The eccentricity of the hyperbola $\displaystyle \dfrac { \sqrt { 1999 }  }{ 3 } \left( { x }^{ 2 }-{ y }^{ 2 } \right) =1$ is:

  1. $\sqrt { 2 } $

  2. $2$

  3. $2\sqrt { 2 } $

  4. $\sqrt { 3 } $


Correct Option: A
Explanation:

Equation of hyperbola is $\displaystyle \frac { { x }^{ 2 } }{ 3/\sqrt { 1999 }  } -\frac { { y }^{ 2 } }{ 3/\sqrt { 1999 }  } =1$

Here $\displaystyle { a }^{ 2 }={ b }^{ 2 }=\frac { 3 }{ \sqrt { 1999 }  } $
$\therefore$ Eccentricity $\displaystyle e=\sqrt { 1+\frac { { b }^{ 2 } }{ { a }^{ 2 } }  } =\sqrt { 1+1 } =\sqrt { 2 } $

The equation of the hyperbola whose foci are $(6,5), (-4, 5)$ and eccentricity $\dfrac54$ is:

  1. $\displaystyle \frac{(x\, -\, 1)^2}{16}\, -\, \frac{(y\, -\, 5)^2}{9}\, =\, 1$

  2. $\displaystyle \frac{x^2}{16}\, -\, \frac{y^2}{9}\, =\, 1$

  3. $\displaystyle \frac{(x\, -\, 1)^2}{16}\, -\, \frac{(y\, -\, 5)^2}{9}\, =\, -1$

  4. $\displaystyle \frac{(x\, -\, 1)^2}{4}\, -\, \frac{(y\, -\, 5)^2}{9}\, =\, 1$


Correct Option: A
Explanation:

Centre of the ellipse $=$ mid point of foci $=(1,5)$

Distance between foci $=\sqrt{(6-(-4))^2+(5-5^2)}$ $= 10$

$2ae=6-(-4)=10\Rightarrow a=5/e=4$

$\Rightarrow b^2 = a^2(e^2-1) = 9$

Hence required hyperbola is $\cfrac{(x-1)^2}{16}-\cfrac{(y-5)^2}{9}=1$

The eccentricity of the hyperbola $4x^2\, -\, 9y^2\, -\, 8x\, =\, 32$ is

  1. $\displaystyle \frac{\sqrt{5}}{3}$

  2. $\displaystyle \frac{\sqrt{13}}{3}$

  3. $\displaystyle \frac{4}{3}$

  4. $\displaystyle \frac{3}{2}$


Correct Option: B
Explanation:

$4x^2\, -\, 9y^2\, -\, 8x\, =\, 32$
$\Rightarrow 4(x^2-2x)-9y^2=32$
$\Rightarrow 4(x^2-2x+1)-9y^2=32+4=36$
$\Rightarrow \cfrac{(x-1)^2}{9}-\cfrac{y^2}{4}=1$
$\Rightarrow a^2=9, b^2=4$
$\therefore e=\sqrt{1+\cfrac{b^2}{a^2}}=\cfrac{\sqrt{13}}{3} $
Hence, option 'B' is correct.

The vertices of a hyperbola are at $(0, 0)$ and $(10,0)$ and one of its focus is at $(18,0)$. The possible equation of the hyperbola is

  1. $\displaystyle \frac{x^2}{25}\, -\, \frac{y^2}{144}\, =\, 1$

  2. $\displaystyle \frac{(x\, -\, 5)^2}{25}\, -\, \frac{y^2}{144}\, =\, 1$

  3. $\displaystyle \frac{x^2}{25}\, -\, \frac{(y\, -\, 5)^2}{144}\, =\, 1$

  4. $\displaystyle \frac{(x\, -\, 5)^2}{25}\, -\, \frac{(y\, -\, 5)^2}{144}\, =\, 1$


Correct Option: B
Explanation:

Centre of hyperbola is $(5, 0)$, so equation is
$\displaystyle \frac{(x\, -\, 5)^2}{a^2}\, -\, \frac{y^2}{b^2}\, =\, 1$
$a\, =\, 5,\, ae\, -\, a\, =\, 8\, \Rightarrow\, e\, =\, \displaystyle \frac{13}{5}$

$b^2\, =a^2(e^2-1)=\, 144$
So required equation is,  $\displaystyle \frac{(x\, -\, 5)^2}{25}\, -\, \frac{y^2}{144}\, =\, 1$
Hence, option 'B' is correct.

In the hyperbola $4x^2\, -\, 9y^2\, =\, 36$, find lengths of the axes, the co-ordinates of the foci, the eccentricity, and the latus rectum.

  1. $6, 4;\, (\pm\, \sqrt{13},\, 0);\, \dfrac{\sqrt{13}}3;\, \dfrac8 3$

  2. $9, 4;\, (\pm\, \sqrt{8},\, 0);\, \dfrac{\sqrt{8}}3;\, \dfrac83$

  3. $9, 4;\, (\pm\, \sqrt{13},\, 0);\, \dfrac{\sqrt{13}}3;\, \dfrac83$

  4. $6, 4;\, (\pm\, \sqrt{8},\, 0);\, \dfrac{\sqrt{8}}3;\, \dfrac83$


Correct Option: A
Explanation:

Given hyperbolas may be written as,  $\displaystyle \frac{x^2}{9}-\frac{y^2}{4}=1$
$\Rightarrow a^2 =9, b^2=4$
$\therefore$ Eccentricity is, $\displaystyle e= \sqrt{1+\frac{b^2}{a^2}}=\frac{\sqrt{13}}{3}$
Thus, length of axes are $2a$ and $2b \Rightarrow 6 $ and $4$
Focus $\equiv (\pm ae, 0) =(\pm \sqrt{13},0)$
And length of latus rectum $=\cfrac{2b^2}{a}=\cfrac{8}{3}$

Find the equation to the hyperbola, whose eccentricity is $\displaystyle \frac{5}{4}$, focus is $(a, 0)$ and whose directrix is $4x - 3y = a$.

  1. $7y^2\, +\, 24xy\, -\, 12ax\, -\, 3ay\, +\, 15a^2\, =\, 0$

  2. $7y^2\, +\, 24xy\, +\, 12ax\, +\, 3ay\, +\, 15a^2\, =\, 0$

  3. $7y^2\, +\, 24xy\, +\, 24ax\, +\, 6ay\, +\, 15a^2\, =\, 0$

  4. $7y^2\, +\, 24xy\, -\, 24ax\, -\, 6ay\, +\, 15a^2\, =\, 0$


Correct Option: D
Explanation:

Using Hyperbola definition, $PS^2=e^2.PM^2$
$\displaystyle (x-a)^2+(y-0)^2=\frac{25}{16}\left| \frac{4x-3y-a}{\sqrt{3^2+4^2}} \right|^2$
$\Rightarrow 16(x^2+y^2-2ax+a^2)=16x^2+9y^2+a^2-24xy+6ya-8ax$
$\Rightarrow 7y^2\, +\, 24xy\, -\, 24ax\, -\, 6ay\, +\, 15a^2\, =\, 0$

If the centre, vertex and focus of a hyperbola be $(0,0), (4, 0)$ and $(6,0)$ respectively, then the equation of the hyperbola is

  1. $4x^2\, -\, 5y^2\, =\, 8$

  2. $4x^2\, -\, 5y^2\, =\, 80$

  3. $5x^2\, -\, 4y^2\, =\, 80$

  4. $5x^2\, -\, 4y^2\, =\, 8$


Correct Option: C
Explanation:

Given $a=4, ae=6\Rightarrow e=\cfrac{3}{2}\Rightarrow \cfrac{b^2}{a^2}=e^2-1=\cfrac{9}{4}-1=\cfrac{5}{4}\Rightarrow b^2=20$
Therefore, required hyperbola is, $\cfrac{x^2}{16}-\cfrac{y^2}{20}=1$
$\Rightarrow 5x^2-4y^2=80$
Hence, option 'C' is correct.

The foci of the ellipse $\displaystyle \frac { { x }^{ 2 } }{ 16 } +\frac { { y }^{ 2 } }{ { b }^{ 2 } } =1$ and the hyperbola $\displaystyle \frac { { x }^{ 2 } }{ 144 } -\frac { { y }^{ 2 } }{ 81 } =\frac { 1 }{ 25 } $ coincide. The value of ${ b }^{ 2 }$ is

  1. $9$

  2. $1$

  3. $5$

  4. $7$


Correct Option: D
Explanation:

The equation of hyperbola is $\displaystyle \frac { { x }^{ 2 } }{ 144 } -\frac { { y }^{ 2 } }{ 81 } =\frac { 1 }{ 25 } $


Here, $\displaystyle a=\sqrt { \frac { 144 }{ 25 }  } ,b=\sqrt { \frac { 81 }{ 25 }  } ,e=\sqrt { 1+\frac { 81 }{ 144 }  } =\frac { 15 }{ 12 } =\frac { 5 }{ 4 } $
$\therefore$ Foci $=\left( \pm 3,0 \right) $
Also, focus of ellipse $\displaystyle =\left( 3,0 \right) \Rightarrow e=\frac { 3 }{ 4 } $
$\displaystyle \therefore { b }^{ 2 }=16\left( 1-\frac { 9 }{ 16 }  \right) =7$

The hyperbola $\dfrac{x^2}{a^2}\, -\, \dfrac{y^2}{b^2}\, =\, 1\, (a,\, b\, >\, 0)$ passes through the point of intersection of the lines $7x + 13y - 87 = 0$ & $5x - 8y + 7 = 0$ and the latus rectum is $\dfrac{32 \sqrt{2}}5$. The values of $a$ and $b$ are:

  1. $\displaystyle a =\frac{5}{\sqrt{2}},\, b=3$.

  2. $\displaystyle a =\frac{5}{\sqrt{2}},\, b=4$.

  3. $\displaystyle a =\frac{7}{\sqrt{2}},\, b=3$.

  4. None of these


Correct Option: B
Explanation:

Point of intersection of lines
$7x + 13y - 87 = 0$ & $5x - 8y + 7 = 0$ is $(5, 4)$.
Also this point lies on the given hyperbola
$\therefore \displaystyle \frac{25}{a^2}\, -\, \frac{16}{b^2}\, =\, 1$ ......(1)
Also latus rectum $\displaystyle LR\, =\, \frac{2b^2}{a}\, =\, \frac{32 \sqrt{2}}{5}$
$\displaystyle \Rightarrow\, b^2\, =\, \frac{16 \sqrt{2}a}{5}$ .....(ii)
From (i) & (ii) $\displaystyle a^2\, =\, \frac{25}{2},\, b^2\, =\, 16$.

For the hyperbola $16x^2\, -\, 9y^2\, +\, 32x\, +\, 36y\,-\, 164\, =\, 0$, find $2(a+b)$.

  1. $8$

  2. $6$

  3. $14$

  4. $12$


Correct Option: C
Explanation:

Given hyperbola can be written as


$16x^2+32x+16-9y^2+36y-36=144$

$\displaystyle\, \frac{(x\, +\, 1)^2}{9}\, -\, \frac{(y\, -\, 2)^2}{16}\, =\, 1$

$\Rightarrow a =3, b = 4$

Length of major axis $=2\times 4=8$ and length of minor axis $=2\times 3 = 6$. 

Hence sum is $2(a+b)=2(3+4)=14.$

A hyperbola having the transverse axis of length $\sqrt{2}$ is confocal with $3x^2 + 4y^2 = 12$, then its equation is:

  1. $2x^2-2y^2=1$

  2. $2x^2+2y^2=1$

  3. $x^2+y^2=2$

  4. $x^2-y^2=2$


Correct Option: A
Explanation:

Given ellipse may be written as, $\displaystyle \frac {x^2}{4}+\frac {y^2}{3}=1$
$\displaystyle \Rightarrow a^2 = 4, b^2 = 3\therefore e = \sqrt{1-\frac{3}{4}}=\frac{1}{2}$
Thus foci of ellipse $(\pm 1, 0)$
Hence foci of the hyperbola is $(\pm 1, 0)$
And semi-major axis $a =\cfrac{1}{\sqrt{2}}$
$\Rightarrow \pm 1=\sqrt {a^2+b^2}\Rightarrow b^2=\frac {1}{2}$
or $b^2=1-a^2=1-\frac {1}{2}=\frac {1}{2}$
The required equation of hyperbola is,
$\displaystyle \frac {x^2}{1/2}-\frac {y^2}{1/2}=1\Rightarrow 2x^2-2y^2=1$

Find the equation to the hyperbola, the distance between whose foci is $16$ and whose eccentricity is $\sqrt{2}$.

  1. $x^2\, -\, y^2\, =\, 32$

  2. $x^2\, -\, y^2\, =\, 18$

  3. $x^2\, -\, y^2\, =\, 64$

  4. $x^2\, -\, y^2\, =\, 48$


Correct Option: A
Explanation:

Given eccentricity of the hyperbola is $\sqrt{2}$
Hence hyperbola is rectangular $a=b$
Also given distance between focii is 16. $\Rightarrow 2ae = 16\Rightarrow a =4\sqrt{2}$
Hence required hyperbola is given by, $x^2-y^2=a^2=32$

A parabola is drawn with its vertex at $(0,-3)$, the axis of symmetry along the conjugate axis of the hyperbola $\displaystyle \frac { { x }^{ 2 } }{ 49 } -\frac { { y }^{ 2 } }{ 9 } =1$ and passing through the two foci of the hyperbola. The coordinates of the focus of the parabola are :

  1. $\displaystyle \left( 0,\frac { 11 }{ 6 }  \right) $

  2. $\displaystyle \left( 0,-\frac { 11 }{ 6 }  \right) $

  3. $\displaystyle \left( 0,\frac { 11 }{ 12 }  \right) $

  4. $\displaystyle \left( 0,-\frac { 11 }{ 12 }  \right) $


Correct Option: A
Explanation:

Equation of hyperbola is $\displaystyle \frac { { x }^{ 2 } }{ 49 } -\frac { { y }^{ 2 } }{ 9 } =1$

Its conjugate axis is y-axis
Also, $\displaystyle e=\sqrt { 1+\frac { { b }^{ 2 } }{ { a }^{ 2 } }  } =\sqrt { 1+\frac { 9 }{ 49 }  } =\frac { \sqrt { 58 }  }{ 7 } $
$\therefore$ Foci of hyperbola is $\left( \pm ae,0 \right) \Rightarrow \left( \pm \sqrt { 58 } ,0 \right) $
Now equation of parabola with vertex at $(0,-3)$ and axis along y-axis is ${ x }^{ 2 }=l\left( y+3 \right) $
It passes through $\left( \pm \sqrt { 58 } ,0 \right) $
$\displaystyle \therefore 58=l\left( 0+3 \right) \Rightarrow l=\frac { 58 }{ 3 } $
$\therefore$ parabola is $\displaystyle { x }^{ 2 }=\frac { 58 }{ 3 } \left( y+3 \right) $
Its focus is $\displaystyle \left( 0,-3+\frac { 58 }{ 4.3 }  \right) \equiv \left( 0,\frac { 11 }{ 6 }  \right) $

Which of the following is true for the hyperbola $9x^2\, -\, 16y^2\, -\, 18x\, +\, 32y\, -\, 151\, =\, 0$?

  1. The length of the transverse axes is $4$

  2. Length of latus rectum is $9$

  3. Equation of directrix is $x\, =\, \displaystyle \frac{21}{5}$ and $x\, =\, - \displaystyle \frac{11}{5}$

  4. None of these


Correct Option: C
Explanation:

$9x^2\, -\, 16y^2\, -\, 18x\, +\, 32y\, -\, 151\, =\, 0$
$9(x^2-2x)-16(y^2-2y)=151$
$9(x^2-2x+1)-16(y^2-2y+1)=151-7=144$
$9(x-1)^2-16(y-1)^2=144$
$\cfrac{(x-1)^2}{16}-\cfrac{(y-1)^2}{9}=1$
$\Rightarrow a^2=16, b^2=9$
$\therefore e=\sqrt{1+\dfrac{b^2}{a^2}}=\cfrac{5}{4}$

$\therefore$ The length of the transverse axis is $=2a=8$
Length of latus rectum is $=2\cfrac{b^2}{a}=\cfrac{9}{2}$
Equation of directrix is, $x=1\pm \cfrac{a}{e}=1 \pm \cfrac{16}{5}=\cfrac{21}{5}$ or $-\cfrac{11}{5}$
Hence, option 'C' is correct.

An ellipse intersects the hyperbola $\displaystyle 2x^{2}-2y^{2}=1$ orthogonally at point $P$. The eccentricity of the ellipse is reciprocal to that of the hyperbola. If the axes of the ellipse are along the co-ordinate axes and product of focal distances of $P$ is $x$ then $2x$ is:

  1. $1$

  2. $2$

  3. $3$

  4. $5$


Correct Option: C
Explanation:

As ellipse and hyperbola intersect orthogonally 
$\displaystyle \Rightarrow $ their foci are coincident
Now we have $\displaystyle SP+S,P=2a\Rightarrow $ length of major axis ellipse ..........(1)
And $\displaystyle \left | SP-S,P \right |=2a'\Rightarrow $ length of transverse axis of hyperbola ....... (2)
$\displaystyle (1)^{2}-(2)^{2}\Rightarrow 4PS'PS=4(a^{2}-a'^{2})=4\left [ \left ( \frac{a'e}{e} \right )^{2} -a'^{2}\right ]=4\left ( 2-\frac{1}{2} \right )=6$
$\displaystyle \Rightarrow 2x = 3$

The equations of the transverse and conjugate axes of a hyperbola are respectively $x + 2y - 3 = 0, 2x - y + 4 = 0$ and their respective lengths are $\displaystyle \sqrt{2}$ 2/$\displaystyle \sqrt{2}$. The equation of the hyperbola is 

  1. $\displaystyle \frac{2}{5}(x+2y-3)^{2}-\frac{3}{5}(2x-y+4)^{2}=1$

  2. $\displaystyle \frac{2}{5}(2x+y-4)^{2}-\frac{3}{5}(x+2y3-4)^{2}=1$

  3. $\displaystyle 2(2x-y+4)^{2}-3(x+2y-3)^{2}=1$

  4. $\displaystyle 2(2x+2y-3)^{2}-3(2x-y+4)^{2}=1$


Correct Option: B
Explanation:

It is given that $2a=\sqrt {2}$ which implies that $a=\dfrac { 1 }{ \sqrt { 2 }  }$.


Also, $2b=\dfrac { 2 }{ \sqrt { 3 }  } \Rightarrow b=\dfrac { 1 }{ \sqrt { 3 }  }$ 

If we take the two axes as the new coordinate system and the point of intersection of the axes of the new origin, then in the new coordinate system, equation of the hyperbola will be:

$\dfrac { { X }^{ 2 } }{ a^{ 2 } } -\dfrac { { Y }^{ 2 } }{ b^{ 2 } } =1\ \Rightarrow \dfrac { { X }^{ 2 } }{ \left( \dfrac { 1 }{ \sqrt { 2 }  }  \right) ^{ 2 } } -\dfrac { { Y }^{ 2 } }{ \left( \dfrac { 1 }{ \sqrt { 3 }  }  \right) ^{ 2 } } =1\ \Rightarrow \dfrac { { X }^{ 2 } }{ \dfrac { 1 }{ 2 }  } -\dfrac { { Y }^{ 2 } }{ \dfrac { 1 }{ 3 }  } =1\ \Rightarrow 2{ X }^{ 2 }-3{ Y }^{ 2 }=1\quad ....(1)$

Let $P(x,y)$ be the coordinates of a point on the hyperbola in original x-y system, then 

$X=\dfrac { \left| 2x-y+4 \right|  }{ \sqrt { 5 }  } ,\quad Y=\dfrac { \left| x+2y-3 \right|  }{ \sqrt { 5 }  } $

($\because$ $X$ is the distance of a point on hyperbola from $2x-y+4=0$ and $Y$ is the distance of a point on hyperbola from $x+2y-3=0$)

Therefore, equation 1 becomes:

$2{ \left( \dfrac { \left| 2x-y+4 \right|  }{ \sqrt { 5 }  }  \right)  }^{ 2 }-3{ \left( \dfrac { \left| x+2y-3 \right|  }{ \sqrt { 5 }  }  \right)  }^{ 2 }=1\ \Rightarrow \dfrac { 2 }{ 5 } { \left( 2x-y+4 \right)  }^{ 2 }-\dfrac { 3 }{ 5 } { \left( x+2y-3 \right)  }^{ 2 }=1$

Hence, the equation of the hyperbola is $\dfrac { 2 }{ 5 } { \left( 2x-y+4 \right)  }^{ 2 }-\dfrac { 3 }{ 5 } { \left( x+2y-3 \right)  }^{ 2 }=1$.

For different values of k if the locus of point of intersection of the lines $\sqrt{3}x-y-4\sqrt{3}k=0,\ \sqrt{3}kx+ky-4\sqrt{3}=0$ represents the hyperbola then the equations of latusrectam are

  1. $x=\pm 8$

  2. $x=\pm\sqrt{2}$

  3. $y=\pm 8$

  4. $y=\pm 4\sqrt{2}$


Correct Option: A

MATCH THE FOLLOWING
Hyperbola                                                   Length of latusrectum
A}$x^{2}-4y^{2}=4$                                               1. 1
B}$25x^{2}-16y^{2}=400$                                     2.12
C}$ 2x^{2}-y^{2}-4x-4y-20=0$                   3.9/2
D)$9x^{2}-16y^{2}+72x-32y-16=0$           4. 25/2

The correct match is

  1. I II III IV

    1 2 3 4

  2. 1 4 2 3

  3. 3 1 2 4

  4. 2 3 4 1


Correct Option: B
Explanation:

(A) $\dfrac{x^{2}}{4}-y^{2}=1$


$LR=\dfrac{2b^{2}}{a}$

$=\dfrac{2}{2}$

$=1$

(B)$\dfrac{x^{2}}{16}-\frac{y^{2}}{25}=1$

$b=5, a=4$

$LR=\dfrac{2.25}{4}$

$=\dfrac{25}{2}$

(C) $2(x-1)^{2}-(y-2)^{2}=18$

$\dfrac{(x-1)^{2}}{9}-\frac{(y-2)^{2}}{18}=1$

$b^{2}=18, a=3$

$LR=\dfrac{2\times 18}{3}$

$=12$

(D) $\dfrac{(x+4)^{2}}{16}-\frac{(y+1)^{2}}{9}=1$

$b^{2}=9$

$a=4$

$LR=2\times \dfrac{9}{4}$

$=\dfrac {9}{2}$

The equation to the hyperbola having its eccentricity $2$ and the distance between its foci is $8$, is

  1. $\dfrac {x^{2}}{12} - \dfrac {y^{2}}{4} = 1$

  2. $\dfrac {x^{2}}{4} - \dfrac {y^{2}}{12} = 1$

  3. $\dfrac {x^{2}}{8} - \dfrac {y^{2}}{2} = 1$

  4. $\dfrac {x^{2}}{16} - \dfrac {y^{2}}{9} = 1$


Correct Option: B
Explanation:

Let the equation of hyperbola is $\dfrac {x^{2}}{a^{2}} - \dfrac {y^{2}}{b^{2}} = 1$
Given, $e = 2, 2ae = 8$
$\Rightarrow ae = 4\Rightarrow a = 2$
Now, $b^{2} = a^{2} (e^{2} - 1)$
$\Rightarrow b^{2} = 4(4- 1)$
$\Rightarrow b^{2} = 12$
$\therefore$ Equation of hyperbola is
$\dfrac {x^{2}}{4} - \dfrac {y^{2}}{12} = 1$

The centre of the hyperbola $\dfrac {x^{2} + 4x + 4}{25} - \dfrac {y^{2} - 6x + 9}{16} = 1$ is: 

  1. $(-4, -9)$

  2. $(-2, 3)$

  3. $(2, -3)$

  4. $(5, 4)$

  5. $(25, 16)$


Correct Option: B
Explanation:
  • the equation of hyperbola is $\dfrac { { x }^{ 2 }+4x+4 }{ 25 } -\dfrac { { y }^{ 2 }-6x+9 }{ 16 } =1$
  • $\dfrac { { (x+2) }^{ 2 } }{ 25 } -\dfrac { { (y-3) }^{ 2 } }{ 16 } =1$
  • Therefore the center is $(-2,3)$

For hyperbola  $-\dfrac{(x-1)^2}{3}+\dfrac{(y+2)^2}{16}=1$ distance between directrices is ?

  1. $\dfrac{2}{\sqrt{19}}$

  2. $\dfrac{3}{\sqrt{19}}$

  3. $\dfrac{4}{\sqrt{19}}$

  4. $\dfrac{32}{\sqrt{19}}$


Correct Option: D
Explanation:
Comparing the equation of given hyperbola with the standard equation
$\dfrac{(y-k)^2}{a^2}-\dfrac{(x-h)^2}{b^2}=1$
$h=1,k=-2,a^2=16,b^2=3$

$e=\sqrt{1+\dfrac{b^2}{a^2}}=\dfrac{\sqrt{19}}{4}$

Distance between the directrices $=\dfrac{2a}{e}=\dfrac{32}{\sqrt{19}}$

For hyperbola  $-\dfrac{(x-1)^2}{3}+\dfrac{(y+2)^2}{16}=1$ vertices are

  1. $(\pm\sqrt3,0)$

  2. $(\pm\sqrt3+1,-2)$

  3. $(\pm1,-2)$

  4. $(0,0)$


Correct Option: B
Explanation:

Given, hyperbola is conjugate hyperbola of $\dfrac { { (x-1) }^{ 2 } }{ 3 } -\dfrac { { (y+2) }^{ 2 } }{ 16 } =-1$

So the vertices of given hyperbola are
${ (x-1) }^{ 2 }=3,{ (y+2) }^{ 2 }=0\ \Rightarrow x-1=\pm \sqrt { 3 } ,y+2=0\ \Rightarrow x=1\pm \sqrt { 3 } ,y=-2\ \Rightarrow \left( 1\pm \sqrt { 3 } ,-2 \right) $
So, option B is correct.

Find the equation to the hyperbola, referred to its axes as axes of coordinates, whose transverse axis is $7$ and which passes through the point $\left( 3,-2 \right) $.

  1. $65y^2-16x^2=196$

  2. $65y^2-14x^2=196$

  3. $85y^2-16x^2=196$

  4. $85y^2-16x^2=147$


Correct Option: C
Explanation:

General equation of hyperbola is $\dfrac{y^2}{b^2}-\dfrac{x^2}{a^2}=1$

Length of transverse axis is $2a$.
So, $2a=7$
$\Rightarrow a=\dfrac{7}{2}$
Equation becomes,
$\dfrac{y^2}{b^2}-\dfrac{4x^2}{49}=1$
It passes through $(3,-2)$, so it should satisfy the parabola,
$\dfrac{4}{b^2}-\dfrac{36}{49}=1$
On solving, we get 
$85y^2-16x^2=196$

Equation of the hyperbola with vertices at $(\pm 5, 0)$ and foci at $(\pm 7, 0)$ is

  1. $24x^2-25y^2=600$

  2. $25x^2-24y^2=600$

  3. $\displaystyle \frac{x^2}{25}-\frac{y^2}{24}=1$

  4. $\displaystyle \frac{x^2}{24}-\frac{y^2}{25}=1$


Correct Option: A,C
Explanation:

$Vertices(\pm 5,0)\quad Foci(\pm 7,0)$ 

$a=\pm 5$ and $ae=\pm 7$ 
And $e=\dfrac { 7 }{ 5 } $ 
We know $e=\sqrt { 1+\frac { { b }^{ 2 } }{ { a }^{ 2 } }  }$ 
On squaring both sides we get:
${ e }^{ 2 }=\quad 1+\frac { { b }^{ 2 } }{ { a }^{ 2 } }$ 
Or $\dfrac { 49 }{ 25 } =1+\frac { { b }^{ 2 } }{ 25 }$ 
Or $\dfrac { { b }^{ 2 } }{ 25 } =\frac { 24 }{ 25 } $
${ b }^{ 2 }=24$ 
The equation of hyperbola is 
$\dfrac { { x }^{ 2 } }{ 25 } -\dfrac { y^{ 2 } }{ 24 } =1$ 
$24{ x }^{ 2 }-25y^{ 2 }=600$

Hence, Option [A] and [C] are correct.

The equation of a hyperbola is given in its standard form as $16x^2-9y^2=144$.Equations of directrices is

  1. $5x \pm 16=0$

  2. $5y \pm 16=0$

  3. $5x \pm 12=0$

  4. $5y \pm 12=0$


Correct Option: B
Explanation:

$Given\quad :\quad 16{ x }^{ 2 }−9{ y }^{ 2 }=144\quad \quad \quad \ Or,\quad \frac { { x }^{ 2 } }{ 9 } -\frac { { y }^{ 2 } }{ 16 } =1\ We\quad know,\ be=\sqrt { { a }^{ 2 }+{ b }^{ 2 } } \quad \quad \quad \quad \quad \because (b>a)\ Or,\quad be=\sqrt { 9+16 } \ Or,\quad be=\pm 5\ Or,\quad \frac { b }{ e } \quad =\frac { 16 }{ \pm 5 } \ We\quad know\quad equation\quad of\quad directrix\quad is\quad y=\frac { b }{ e } \ \therefore \quad 5y\pm 16=0$


Option [B]

The equation of a hyperbola is given in its standard form as $16x^2-9y^2=144$.Coordinates of foci is

  1. $(0, \pm 1)$

  2. $(0, \pm 1, 0)$

  3. $(\pm 5, 0)$

  4. $(0, \pm 5)$


Correct Option: D
Explanation:

$Given\quad :\quad 16{ x }^{ 2 }−9{ y }^{ 2 }=144\quad \quad \quad \ Or,\quad \frac { { x }^{ 2 } }{ 9 } -\frac { { y }^{ 2 } }{ 16 } =1\ We\quad know,\ be=\sqrt { { a }^{ 2 }+{ b }^{ 2 } } \quad \quad \quad \quad \quad \because (b>a)\ Or,\quad be=\sqrt { 9+16 } \ Or,\quad be=\pm 5\ \therefore \quad Focii\quad is\quad (0,\pm 5)\quad $


Option [D]

Hyperbola $\dfrac{{x}^{2}}{{a}^{2}}-\dfrac{{y}^{2}}{3}=1$ of eccentricity $e$ is confocal with the ellipse $\dfrac{{x}^{2}}{8}+\dfrac{{y}^{2}}{4}=1$. Let $A$, $B$, $C$ & $D$ are points of intersection of hyperbola & ellipse, then-

  1. $e=\dfrac{5}{2}$

  2. $e=2$

  3. $A$, $B$, $C$, $D$ are concyclic points

  4. Number of common tangents of hyperbola & ellipse is $2$


Correct Option: A

The foci of hyperbola $9x^2-16y^2+18x+32y=151$ are 

  1. $(-4,1),(6,1)$

  2. $(-11,2),(-6,1)$

  3. $(4,1),(-6,1)$

  4. $(2,1),(1,-6)$


Correct Option: C
Explanation:
$9{x}^{2}−16{y}^{2}+18x+32y=151$
$\left(9{x}^{2}+18x\right)-\left(16{y}^{2}-32y\right)=151$
$\Rightarrow \left({\left(3x\right)}^{2}+2\times 3x\times 3+{3}^{2}-{3}^{2}\right)-\left({\left(4y\right)}^{2}-2\times 4y\times 4+{4}^{2}-{4}^{2}\right)=151$ by completing the square method
$\Rightarrow {\left(3x+3\right)}^{2}-9-{\left(4y-4\right)}^{2}+16=151$
$\Rightarrow {\left(3x+3\right)}^{2}-{\left(4y-4\right)}^{2}=151-7$
$\Rightarrow {\left(3x+3\right)}^{2}-{\left(4y-4\right)}^{2}=144$
$\Rightarrow 9{\left(x+1\right)}^{2}-16{\left(y-1\right)}^{2}=144$
$\Rightarrow \dfrac{9{\left(x+1\right)}^{2}}{144}-\dfrac{16{\left(y-1\right)}^{2}}{144}=1$ by dividing both sides by $144$
$\Rightarrow \dfrac{{\left(x+1\right)}^{2}}{16}-\dfrac{{\left(y-1\right)}^{2}}{9}=1$ is the equation of the horizontal hyperbola.
center$=\left(-1,1\right)$
We have $a=4$ and $b=3$
${c}^{2}={a}^{2}+{b}^{2}={4}^{2}+{3}^{2}=16+9=25$
$\therefore c=\sqrt{25}=\pm 5$
Foci$=\left(-1\pm 5, 1\right)$
$\therefore$Foci$=\left(-1+5,1\right)$ and $\left(-1-5,1\right)$
Hence Foci$=\left(4,1\right)$ and $\left(-6,1\right)$

If foci of $\dfrac {x^2}{a^2}-\dfrac {y^2}{b^2}=1$ coincide with the foci of $\dfrac {x^2}{25}+\dfrac {y^2}{9}=1$ and eccentricity of the hyperbola is 2, then :

  1. $a^2+b^2=16$

  2. there is no director circle to the hyperbola

  3. centre of the director circle is $(0, 0)$

  4. length of latus rectum of the hyperbola $=12$


Correct Option: A,B,D
Explanation:

$\displaystyle \frac { { x }^{ 2 } }{ 25 } +\frac { { y }^{ 2 } }{ 9 } =1$
which is an ellipse.
For ellipse, $a=5$ , $b=3$ 
$\Rightarrow \displaystyle e=\sqrt {\frac {25-9}{25}}=\frac {4}{5}$
$\therefore ae=4$
Hence, the foci are $(-4, 0)$ and $(4, 0)$.
For the hyperbola,
$ae=4, e=2$
$\Rightarrow a=2$
$b^2=4(4-1)=12$
$\Rightarrow b=\sqrt {12}$
$\Rightarrow a^2+b^2=16$
Since $b^2>a^2$, so there is no director circle to the hyperbola.
Length of latus rectum $\displaystyle=\frac{2b^2}{a}=12$

The centre of the conic section $14x^2-4xy+11y^2-44x-58y+71=0$ is

  1. $(2, 3)$

  2. $(2, -3)$

  3. $(-2, 3)$

  4. $(-2, -3)$


Correct Option: A
Explanation:

Let $S\equiv 14x^2-4xy+11y^2-44x-58y+71$
To know centre of this hyperbola, $\cfrac{\partial S}{\partial x}=0$ and $\cfrac{\partial S}{\partial y}=0 $
$\Rightarrow \cfrac{\partial S}{\partial x}=28x-4y-44=0\Rightarrow 7x-y-11=0  ..(1)$
and $\cfrac{\partial S}{\partial y}=-4x+22y-58=0\Rightarrow 2x-11y+29=0  ..(2)$
Solving $(1)$ and $(2)$ we get required centre $(2,3)$
Hence, option 'A' is correct.

The vertices and the foci of a hyperbola are the points $\displaystyle \left ( \pm 5, 0 \right )$ and $\displaystyle \left ( \pm 7, 0 \right )$.Which of the following holds true?

  1. $\displaystyle a^{2}\neq b^{2}$

  2. $a^2=b^2$

  3. $\dfrac{a^2}{b^2}=2$

  4. None of these


Correct Option: A
Explanation:

$\displaystyle a= 5, ae = 7\Rightarrow a^{2}e^{2}= 49$
or $\displaystyle a^{2}\left ( 1+\frac{b^{2}}{a^{2}} \right )= 49$ 

Or 
$\displaystyle a^{2}+b^{2}=49$ 
$\displaystyle b^{2}= 24$ 
Since, $\displaystyle a^{2}\neq b^{2},$ hence hyperbola is not rectangular.

An ellipse intersects the hyperbola $2x^{2}-2y^{2}=1$ orthogonally. The eccentricity of the ellipse is reciprocal of that of the hyperbola. If the axes of the ellipse are along the coordinates axes, then

  1. equation of ellipse is $x^{2}+2y^{2}=2$

  2. the foci of ellipse are $\left ( \pm 1, 0 \right )$

  3. equation of ellipse is $x^{2}+2y^{2}=4$

  4. the foci of ellipse are $\left ( \pm \sqrt{2}, 0 \right )$


Correct Option: A,B
Explanation:

Eccentricity of the hyperbola is $\sqrt{2}$ as it is a rectangular hyperbola. 

So eccentricity $e$ of the ellipse is $\dfrac1{\sqrt{2}}$
Let the equation of the ellipse be $\displaystyle \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ where $b^{2}=a^{2}\left ( 1-e^{2} \right )=\dfrac{a^{2}}2\Rightarrow a^{2}=2b^{2}$
So equation of the ellipse is $x^{2}+2y^{2}=a^{2}$
Let $\left ( x _{1}, y _{1} \right )$ be a point of intersection of the ellipse and the hyperbola
Then $2x _{1}^{2}-2y _{1}^{2}=1$ and $x _{1}^{2}+2y _{1}^{2}=a^{2}$          (1)
Equations of the tangents at $\left ( x _{1}, y _{1} \right )$ to the two conics are
   $2xx _{1}-2yy _{1}=1$ and $xx _{1}+2yy _{1}=a^{2}$
Since the two conics intersect orthogonally
$\displaystyle \left ( \frac{x _{1}}{y _{1}} \right )\left ( -\frac{x _{1}}{2y _{1}} \right )=-1\Rightarrow x _{1}^{2}=2y _{1}^{2}$
And from (1) we get $x _{1}^{2}=1$, $a^{2}=2$.
Hence the equation of the ellipse is $x^{2}+2y^{2}=2$ and its focus is
   $\displaystyle \left ( \pm ae, 0 \right )=\left ( \pm \sqrt{2}\times \frac{1}{\sqrt{2}}, 0 \right )=\left ( \pm 1, 0 \right )$

- Hide questions