0

Sum of n terms of an gp - class-XI

Attempted 0/73 Correct 0 Score 0

If the sum of infinite G.P. $p, 1, \dfrac{1}{p}, \dfrac{1}{p^2}, ......., $ is $\dfrac{9}{2}$. Then find the value of $p$.

  1. $1$

  2. $\dfrac{3}{2}$

  3. $3$

  4. $\dfrac{5}{2}$


Correct Option: B,C
Explanation:

Sum of infinite series of a GP $=\dfrac {a} {1-r}$, where $a$ is the first term and $r$ is the common ratio

 
Here $a=p$ and $r=\dfrac {1}{p}$

$\Rightarrow \dfrac {p} {1-\dfrac {1}{p}}=\dfrac {9}{2}$

$\Rightarrow \dfrac {p^{2}}{p-1}=\dfrac {9}{2}$

$\Rightarrow 2p^{2}-9p+9=0$

$\Rightarrow 2p^{2}-6p-3p+9=0$

$\Rightarrow (2p-3)(p-3)=0$

$\Rightarrow p=3,\dfrac{3}{2}$    (because common ratio $r=1/p$ must be less than 1) 

The sum of 100 terms of the series .9+.09+.009.....will be:

  1. $1 - {\left( {\frac{1}{{10}}} \right)^{100}}$

  2. $1 + {\left( {\frac{1}{{10}}} \right)^{100}}$

  3. $1 + {\left( {\frac{1}{{100}}} \right)^{100}}$

  4. $1 - {\left( {\frac{1}{{100}}} \right)^{100}}$


Correct Option: B

Sum $1,\sqrt { 3 } ,3......$ to $12$ terms is

  1. $364\left( \sqrt { 3 } +1 \right)$

  2. $364\left( \sqrt { 3 } -1 \right)$

  3. $\dfrac { 364 }{ \left( \sqrt { 3 } -1 \right) } $

  4. $\dfrac { 728 }{ \left( \sqrt { 3 } +1 \right) }$


Correct Option: A
Explanation:
$1\,,\,\,\sqrt 3 \,\,,\,3\,,\,.....12\,\,terms$
  It is a G.P with $a = 1\,,\,r\, = \sqrt 3 $
$1\,,\,\,\sqrt 3 \,\,,\,3\,,\,.....12\,\,terms$
${S _n} = \cfrac{{a\left( {{r^n} - 1} \right)}}{{r - 1}}$
$ \Rightarrow {S _{12}} = \cfrac{{1\left( {{{\left( {\sqrt 3 } \right)}^{12}} - 1} \right)}}{{\sqrt 3  - 1}}$
$ \Rightarrow {S _{12}} = \cfrac{{{3^6} - 1}}{{\sqrt 3  - 1}} \times \cfrac{{\sqrt 3  + 1}}{{\sqrt 3  + 1}}$
$ \Rightarrow {S _{12}} = \cfrac{{728\left( {\sqrt 3 } \right. + \left. 1 \right)}}{{3 - 1}}$
$\Rightarrow {S _{12}} = \cfrac{{728\left( {\sqrt 3 } \right. + \left. 1 \right)}}{2}$
$ \Rightarrow {S _{12}} = 364\left( {\sqrt 3 } \right. + \left. 1 \right)$

The sum of $2n$ terms of a geometric progression whose first term is $'a'$ and common ratio $'r'$ is equal to the sum of $n$ terms of a geometric progression whose first term is $'b'$ and common '$r^{2}$'. then $b$ is equal to

  1. The sum of the first two terms of the first series.

  2. The sum of the first and last terms of the first series.

  3. The sum of the last two terms of the first series.

  4. None of these


Correct Option: A
Explanation:

Given that

$\begin{array}{l} \dfrac { { a\left( { { r^{ 2n } }-1 } \right)  } }{ { r-1 } } =\dfrac { { b{ { \left( { { r^{ 2 } } } \right)  }^{ n } }-1 } }{ { { r^{ 2 } }-1 } }  \ \Rightarrow \dfrac { { a\left( { { r^{ 2n } }-1 } \right)  } }{ { r-1 } } =\dfrac { { b\left( { { r^{ 2n } }-1 } \right)  } }{ { (r-1)\left( { r+1 } \right)  } }  \ \Rightarrow b=a\left( { r+1 } \right)  \ \Rightarrow b=a+ar \end{array}$
$b$= sum of first two term of the first series.

The value of $x$ that satisfies the relation $x=1-x+x^{2}-x^{3}+x^{4}-x^{5}+.\infty$ if $|x|<1$ 

  1. $\dfrac{-1\pm\sqrt5}{2}$

  2. $\dfrac{-1\pm3i}{2}$

  3. $0$

  4. $none$


Correct Option: A
Explanation:
Here the first term is $a$ 
Common ratio is given by $-x$
The sum of infinite series is of an GP is given by $\dfrac{a}{1-r}\\x=dfrac{1}{1+x}\\x^2+x=1\\x^2+x-1=0$
Using quadratic formulae $\dfrac{-b\pm\sqrt{b^2-4ac}}{2a}$
Here $a=1b=1c=-1$
$\implies x=\dfrac{-1\pm\sqrt{1+4}}{2}\\x=\dfrac{-1\pm\sqrt{5}}{2}$

In a infinite G.P. , the sum of first three terms is 70. If the extreme terms are multiplied by 4 and the middle term is multiplied by 5, the resulting terms form an A.p. then the sum to infinite terms of G.p.   

  1. 120

  2. -40

  3. 160

  4. 80


Correct Option: B
Explanation:

We have,

The three numbers be $a,ar\,and\,a{{r}^{2}}$.

Given that,


$ a+ar+a{{r}^{2}}=70 $

$ \Rightarrow a\left( 1+r+{{r}^{2}} \right)=70\,\,......\,\,\left( 1 \right) $


Also given that,

$4a,\,5ar\,and\,4a{{r}^{2}}$ in an A.P.

$\begin{align}

$ \Rightarrow 2\left( 5ar \right)=4a+4a{{r}^{2}} $

$ \Rightarrow 5r=2+2{{r}^{2}} $

$ \Rightarrow 2{{r}^{2}}-5r+2=0 $

$ \Rightarrow 2{{r}^{2}}-\left( 4+1 \right)r+2=0 $

$ \Rightarrow 2{{r}^{2}}-4r-1r+2=0 $

$ \Rightarrow 2r\left( r-2 \right)-1\left( r-2 \right)=0 $

$ \Rightarrow \left( r-2 \right)\left( 2r-1 \right)=0 $

$ \Rightarrow r-2=0,\,\,2r-1=0 $

$ \Rightarrow r=2,\,\,r=\dfrac{1}{2} $

From (1) we get,

$a=10\,\,\,at\,\,\,r=2$

And $a=40\,\,\,at\,\,\,r=\dfrac{1}{2}$

Sum of this series

$ =\dfrac{a}{1-r} $

$ =\dfrac{40}{1-2} $

$ =-40 $

This is the answer.

Find the sum of $1,\dfrac 14,\dfrac 1{16},.....$

  1. $\dfrac 43$

  2. $\dfrac 34$

  3. $\dfrac 1 {16}$

  4. none


Correct Option: A
Explanation:

The series form a GP with $a=1,r=\dfrac 14$

Sum of series $S _{\infty}=\dfrac{1}{1-\dfrac 14}\\dfrac 1{\dfrac 34}\\dfrac 43$

If a $ >0,  $ then the minimum value of sum of $  \dfrac{1}{a}, 1, a^{2}, a^{3}, \dfrac{1}{a^{4}}  $ is equal to

  1. $2$

  2. $3$

  3. $4$

  4. $5$


Correct Option: A
Explanation:

Sum of $\dfrac{1}{a},1,a^2,a^3,\dfrac{1}{a^4}$ is $1+a^2+a^3+\dfrac{1}{a}+\dfrac{1}{a^4}$

$AM\ge GM$
$\implies \dfrac{1+a^2+a^3+\frac{1}{a}+\frac{1}{a^4}}{5}\ge \sqrt[5]{(1)(a^2)(a^3)(\frac{1}{a})(\frac{1}{a^4})}$
$1+a^2+a^3+\dfrac{1}{a}+\dfrac{1}{a^4}\ge 5\sqrt[5]{1}$

$1+a^2+a^3+\dfrac{1}{a}+\dfrac{1}{a^4}\ge 5$
The minimum value of $1+a^2+a^3+\dfrac{1}{a}+\dfrac{1}{a^4}$ is $5$

Evaluate:
$2+2^2+2^3+....+2^9=$

  1. $1396$

  2. $1022$

  3. $1587$

  4. $1478$


Correct Option: B
Explanation:

$2+{ 2 }^{ 2 }+{ 2 }^{ 3 }+......+{ 2 }^{ 9 }$

The series is in $GP$ with common difference$=\cfrac { { 2 }^{ 2 } }{ 2 } =\cfrac { { 2 }^{ 3 } }{ 2 } .....=\cfrac { { 2 }^{ 9 } }{ { 2 }^{ 8 } } =2$
Sum of $GP=\cfrac { a({ r }^{ n }-1) }{ r-1 } $ where $a$ is the first term and $r$ is the common difference and last term$=a({ r }^{ n }-1)$
So,Last term,$2.{ 2 }^{ n-1 }={ 2 }^{ 9 }\ { 2 }^{ n-1 }={ 2 }^{ 8 }\ n-1=8\ n=9$
Sum$==\cfrac { 2({ 2 }^{ 9 }-1) }{ 2-1 } =2(512-1)\ =2(511)=1022$
Answer $(B)$.

Sum of the first five terms of the geometric series $1 + \dfrac {2}{3} + \dfrac {4}{9} + $....is 

  1. $\dfrac {211}{81}$

  2. $\dfrac {81}{211}$

  3. $-\dfrac {211}{81}$

  4. $-\dfrac {81}{211}$


Correct Option: A
Explanation:

$\displaystyle { s } _{ 5 }=\frac { 1\times \left[ { 1-\left( { 2 }/{ 3 } \right)  }^{ 5 } \right]  }{ 1-\left( { 2 }/{ 3 } \right)  } =\frac { 211 }{ 81 } $

Given $A=2^{65}$ and $B=(2^{64}+2^{63}+2^{62}+....+2^0)$

  1. B is $2^{64}$ larger than A

  2. A and B are equal

  3. B is larger than A by $1$

  4. A is larger than B by $1$


Correct Option: D
Explanation:

B is in G.P. with $a=2^0, r=2, n=65$
$\therefore S _n=\frac {a(r^n-1)}{r-1}=\frac {2^0(2^{65}-1)}{2-1}$
$\therefore B=2^{65}-1$
$\Rightarrow B=A-1$
$\therefore$ A is larger than B by $1$.

The sum of the geometric sequence is given as $S=\cfrac{a(1-r^n)}{1-r}$, where $r$ is the

  1. constant

  2. term

  3. common difference

  4. common ratio


Correct Option: D
Explanation:
We know $S=\dfrac {a(1-r^n)}{1-r}$
In a geometric sequence, the ratio of terms is constant and is known as the common ratio $(r)$.
So, in the formula for summation, $r$ is common ratio.

If $a _1,\, a _2,\, a _3,\dots,a _n$ are in geometric progression. Then the given geometric progression is a

  1. finite geometric progression

  2. finite harmonic progression

  3. infinite geometric progression

  4. finite arithmetic progression


Correct Option: A
Explanation:
Given sequence is $a _1,a _2,a _3,....a _n$
Since the last term is given, so the given progression is finite and it is given that progression is geometric progression.
So, the given progression is a finite geometric progression.

$x, 2x, 4x, . . .$
The first term in the sequence above is $x$, and each term thereafter is equal to twice the previous term. Find the sum of the first five terms of this sequence.

  1. $10x$

  2. $15x$

  3. $30x$

  4. $31x$

  5. $32x$


Correct Option: D
Explanation:

The first term in given Geometric series, $a _1=x$
The common ratio $r$ $=\dfrac{4x}{2x}=2$
No. of terms, $n$ $=5$
Applying sum of GP formula,
$S _n=\dfrac{a(1-r^n)}{1-r}$
      $=\dfrac{x(1-2^5)}{1-2}$
      $=\dfrac{x(1-32)}{-1}=31x$
Hence,option D is correct.

Find the sum of the following G.P. to $n$ terms $0.5 + 0.55 + 0.555 + 0.5555 + .....$

  1. $\dfrac {5}{9}\left[9n-1+\dfrac {1}{10^n}\right]$

  2. $\dfrac {5}{81}\left[5n-1-\dfrac {1}{10^n}\right]$

  3. $\dfrac {5}{81}\left[9n-1+\dfrac {1}{10^n}\right]$

  4. $-\dfrac {5}{9}\left[9n-1+\dfrac {1}{10^n}\right]$


Correct Option: C

Let $n > 1$ be the positive integer. The largest positive integer $m$, such that $n^m + 1$ divides $1 + n + n^2 ..... n^{125}$ is

  1. $60$

  2. $62$

  3. $63$

  4. $64$


Correct Option: C
Explanation:

We have,

 $1 + n + n^2 ..... n^{125}$
$=\dfrac{n^{126}-1}{n-1}$
$=\dfrac{(n^{63})^2-1}{n-1}$
$=\dfrac{(n^{63}-1)(n^{63}+1)}{n-1}$
This will be divisible by $n^m+1$ for largest $m$ when $m=63$.

The sum of the first three terms of an increasing G.P. is $13$ and their product is $27$. The sum of the first $5$ terms is,

  1. $323$

  2. $363$

  3. $109$

  4. $254$


Correct Option: B
Explanation:

Let the G.P be $\dfrac{a}{r}, a, ar$.


So,
$\dfrac{a}{r}+ a+ ar=13$

And
$\dfrac{a}{r}\times  a\times  ar=27$

$a^3=27$
$a=3$

Therefore,
$\dfrac{3}{r}+ 3+ 3r=13$

$3+ 3r+ 3r^2=13r$

$3r^2-10r+3=0$

$3r^2-9r-r+3=0$

$3r(r-3)-1(r-3)=0$

$(3r-1)(r-3)=0$

$r=\dfrac{1}{3}, 3$

So, $r=3$

So, the G.P is $1, 3, 9$.

Now, the sum of first five terms
$=\dfrac{3(3^5-1)}{3-1}$

$=\dfrac{3(243-1)}{2}$

$=\dfrac{3(242)}{2}$

$=3(121)=363$

Hence, this is the answer.

If $i^{2}=-1$, then sum $i+i^{2}+i^{3}+.......$ to $1000$ terms is equal to

  1. $1$

  2. $-1$

  3. $i$

  4. $0$


Correct Option: D

The sum of sequence $0.15,0.015,0.0015,.....$ upto 20 term is ?

  1. $\dfrac{1}{6}[1-(0.1)^{20}]$

  2. $\dfrac{1}{6}[1+(0.1)^{20}]$

  3. $\dfrac{1}{3}[1-(0.1)^{20}]$

  4. None of these


Correct Option: A
Explanation:

Since the sequence in Geometric progression 

where, $a=0.15;\ r=\dfrac { 0.015 }{ 0.15 } =0.1;\ n=20\ \therefore { S } _{ n }=\dfrac { a({ r }^{ n }-1) }{ (r-1) } \ =\dfrac { 0.15({ \left( 0.1 \right)  }^{ 20 }-1) }{ 0.1-1 } \ =\dfrac { 1 }{ 6 } \left( 1-{ (0.1) }^{ 20 } \right) $

The sum of $10$ terms of GP $\frac { 1 } { 2 } + \frac { 1 } { 4 } + \frac { 1 } { 8 } + \ldots$ is-

  1. $\frac { 2 ^ { 10 } - 1 } { 2 ^ { 10 } }$

  2. $\frac { 2 ^ { 9 } - 1 } { 2 ^ { 9 } }$

  3. $\frac { 2 ^ { 10 } - 1 } { 2 ^ { 9 } }$

  4. $\frac { 2 ^ { 9 } - 1 } { 2 ^ { 10 } }$


Correct Option: A
Explanation:
$S=\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+...$ is in G.P
where $a=\dfrac{1}{2}$ and $r=\dfrac{\dfrac{1}{4}}{\dfrac{1}{2}}=\dfrac{1}{2}$
${S} _{n}=\dfrac{a\left({r}^{n}-1\right)}{r-1}$
${S} _{10}=\dfrac{\dfrac{1}{2}\left({\left(\dfrac{1}{2}\right)}^{10}-1\right)}{\dfrac{1}{2}-1}$
${S} _{10}=\dfrac{\dfrac{1}{2}\left({\left(\dfrac{1}{2}\right)}^{10}-1\right)}{\dfrac{-1}{2}}$

$=1-\dfrac{1}{{2}^{10}}$
$=\dfrac{{2}^{10}-1}{{2}^{10}}$


The geometric series $a+ar+ar^{2}+ar^{3}+......\infty$ has sum $7$ and the terms involving odd powders of $r$ has sum $'3'$, then the value of $(a^{2}-r^{2})$ is-

  1. $\dfrac{5}{4}$

  2. $\dfrac{5}{2}$

  3. $\dfrac{25}{4}$

  4. $5$


Correct Option: B
Explanation:
Sum of geometric series = $\dfrac{a(r^{n}-1)}{r-1}=7$
Also odd powers of r terms :-
$ar,ar^{3},ar^{5},ar^{7}$
$\therefore sum=\dfrac{ar(r^{2n}-1)}{r^{2}-1}$
$\therefore $ sum of infinite G.P = $\dfrac{a}{1-r}=7$ _________(1)
$\therefore $ sum of infinite second = $\dfrac{ar}{1-r^{2}}=3$ _____(2)
$\therefore $ From (1) & (2)
$\dfrac{1+r}{r}=\dfrac{7}{3} ; r=\dfrac{3}{4}$
$\therefore a=\dfrac{7}{4}$
$\therefore a^{2}-r^{2}=\dfrac{5}{2}$

The sum 
$1 + \left( {1 + x} \right) + \left( {1 + x + {x^2}} \right) + \left( {1 + x + {x^2} + {x^3}} \right) +  \ldots n$  terms equals 

  1. $\frac{{1 - {x^n}}}{{1 - x}}$

  2. $\frac{{x\left( {1 - {x^n}} \right)}}{{1 - x}}$

  3. $\frac{{n\left( {1 - x} \right) - x\left( {1 - {x^n}} \right)}}{{{{\left( {1 - x} \right)}^2}}}$

  4. None of these


Correct Option: C

$\lim _{ x\leftarrow 1 }{ \cfrac { x+{ x }^{ 2 }+{ x }^{ 3 }+....+{ x }^{ n }-n }{ x-1 }  } =$

  1. $\cfrac{n(n+1)}{2}$

  2. $\cfrac{n+1}{2}$

  3. $\cfrac{2}{n}$

  4. $n$


Correct Option: A
Explanation:

$\underset{x \rightarrow 1}{lim} \dfrac{x + x^2 + x^3  + .... + x^n - x}{x - 1} \left(\dfrac{0}{0} \right)$ form

By L Hospital rule
$= \underset{x \rightarrow 1}{lim} \dfrac{1 + 2x + 3x^2 + ... + nx^{n - 1}}{1}$
$= 1 + 2 + 3 + ... + n$
$= \dfrac{n (n + 1)}{2}$

The sum of first $10$ terms of the series $\sqrt{2}+\sqrt{6}+\sqrt{18}+...$ is

  1. $121(\sqrt{6}+\sqrt{2})$

  2. $243(\sqrt{3}+1)$

  3. $\cfrac{121}{\sqrt{3}-1}$

  4. $242(\sqrt{3}-1)$


Correct Option: A
Explanation:
$s=\sqrt{2}+\sqrt{6}+\sqrt{18}+....$

$\Rightarrow s=\sqrt{2}+\sqrt{2}\times \sqrt{3}+\sqrt{2}(\sqrt{3})^2+.....$

This is a G.P with $1$st term $(a)=\sqrt{2}$ and common ratio$(r)=\sqrt{3}$

Sum of $10$ terms of this G.P., $S=\dfrac{a(r^{10}-1)}{r-1}$

$=\dfrac{\sqrt{2}((\sqrt{3})^{10}-1)}{\sqrt{3}-1}$

$=\dfrac{\sqrt{2}(242)}{\sqrt{3}-1}\times \dfrac{\sqrt{3}+1}{\sqrt{3}+1}$

$=121\times \sqrt{2}(\sqrt{3}+1)$

$=121(\sqrt{6}+\sqrt{2})$

$\Rightarrow (A)$ Option. 

If ${S} _{n}=\sum _{ r=1 }^{ n }{ \cfrac { 1+2+{ 2 }^{ 2 }+..Sum\quad to\quad r\quad terms }{ { 2 }^{ r } }  } $, then ${S} _{n}$ is equal to 

  1. ${2}^{n}-n-1$

  2. $1-\cfrac{1}{{2}^{n}}$

  3. $n-1+\cfrac{1}{{2}^{n}}$

  4. ${2}^{n}-1$


Correct Option: C
Explanation:
$\displaystyle  \rightarrow S _{n} = \sum _{r=1}^{n}\left(\dfrac{\frac{2^{r}-1}{2-1}}{2^{r}}\right)$ sum of G.P

$\displaystyle  \Rightarrow S _{n} = \sum _{r=1}^{n}(1-2^{-r})$

$ \displaystyle \Rightarrow S _{n} = n- \sum _{r=1}^{n}2^{-r}$

$ \displaystyle \Rightarrow S _{n} = n -\left(2^{-1}(\frac{2^{-n}-1}{2^{-1}-1})\right)$

$\displaystyle  \Rightarrow S _{n} = n-\left(\frac{1}{2}(\frac{1-2^{n}}{2^{n}(\frac{-1}{2})})\right)$

$\displaystyle  \Rightarrow S _{n} = n+\left(\frac{1-2^{n}}{2^{n}}\right) = n-1+\frac{1}{2^{n}}$

$ \Rightarrow (C)$

Find the sum of 8 terms of the G.P: 3+6+12+24.........

  1. 381

  2. 384

  3. 128

  4. None of these


Correct Option: A

If $a _{0},a _{1},a _{3},....$ and $b _{0},b _{1},b _{2},b _{3},...$ are two geometric progressions with $a _{1}=2\surd 3$ and $b _{1}=\dfrac {52}{9}\sqrt {3}$ if $3a _{99}b _{99}=104$ then $\displaystyle \sum^{101} _{i=0}a _{1}b _{1}$ is

  1. $102$

  2. $3536$

  3. $2040$

  4. $3120$


Correct Option: D

$1+3+7+15+31+.....$ to n terms 

  1. ${2^{n + 1}} - n$

  2. ${2^{n + 1}} - n - 2$

  3. ${2^n} - n - 2$

  4. None of these


Correct Option: B

If $1+a+a^{2}+a^{3}+.........+a^{n}=(1+a)(1+a^2)(1+a^4)$ then $n$ is given by 

  1. $3$

  2. $5$

  3. $7$

  4. $9$


Correct Option: C
Explanation:

Given, 

$1+a+a^{2}+a^{3}+.........+a^{n}=(1+a)(1+a^2)(1+a^4)$
or, $1+a+a^{2}+a^{3}+.........+a^{n}=(1+a+a^2+a^3)(1+a^4)$
or, $1+a+a^{2}+a^{3}+.........+a^{n}=(1+a+a^2+a^3+a^4+a^5+a^6+a^7)$
Comparing both sides we get, $n=7$.

The sum of first 4 term of GP with $a=2,r=3$ is 

  1. $80$

  2. $26$

  3. $127$

  4. $8$


Correct Option: A
Explanation:

$a=2,r=3$

Sum of first $4$ terms is $\dfrac{a(r^n-1)}{r-1}\\dfrac{2(3^4-1)}2=81-1=80$

Three numbers whose sum is $45$ are in A.P. If $5$ is subtracted from the first number and $25$ is added to third number, the numbers are in G.P. Then numbers can be

  1. $10,\ 15,\ 20$

  2. $8,\ 15,\ 22$

  3. $5,\ 15,\ 25$

  4. $12,\ 15,\ 18$


Correct Option: A
Explanation:

Let the numbers be $a-d,a,a+d$

Their sum is $45\a-d+d+a+d=45\3a=45\a=15$
The changed numbers are $15-d-5,15,15+d+25\10-d,15,40+d$
Condition to be in GP is $b^2=ac\15^2=(10-d)(40+d)\225=400-30d-d^2\d^2+30d-175=0\d^2+35d-5d-175=0\d(d+35)-5(d+35)=0\(d-5)(d+35)=0\d=5,-35$
$a=15,d=5$
So the series is $10,15,20$

If $S$ is the sum to infinity of a $G.P.$ whose first terms is $a$ then the sum of the first $n$ terms is 

  1. $S\left(1-\dfrac{a}{S}\right)^{n}$

  2. $S\left[1-\left(1-\dfrac{a}{S}\right)\right]^{n}$

  3. $a\left[1-\left(1-\dfrac{a}{S}\right)\right]^{n}$

  4. $S\left[1-\left(1-\dfrac{S}{a}\right)\right]^{n}$


Correct Option: A

For first $n$ natural numbers we have the following results with usual notations $ \displaystyle \sum _{r=1}^{n}r =\frac{n(n+1)}{2}, \sum _{r=1}^{n}r^{2} =\frac{n(n+1)(2n+1)}{6},\sum _{r=1}^{n}r^{3}=\left ( \sum _{r=1}^{n}r \right )^{2}$ If $\displaystyle a _{1}a _{2}....a _{n} \in A.P $ then sum to $n$ terms of the sequence $\displaystyle \frac{1}{a _{1}a _{2}},\frac{1}{a _{2}a _{3}},...\frac{1}{a _{n-1}a _{n}}$ is equal to $\displaystyle \frac{n-1}{a _{1}a _{n}}$
 and the sum to $ n$ terms of a $G.P$ with first term '$a$' & common ratio '$r$' is given by  $\displaystyle S _{n}= \frac{lr-a}{r-1}$ for $ r \neq 1 $ for $ r =1 $ sum to $n$ terms of same $G.P.$ is $n$ $a$, where the sum to infinite terms of$G.P.$ is the limiting value of
 $\displaystyle \frac{lr-a}{r-1} $ when $\displaystyle n \rightarrow \infty ,\left |  r \right | < l $ where $l$ is the last term of $G.P.$  On the basis of above data answer the following questionsThe sum of the series $\displaystyle 2+6+18+...+486 $ equals?

  1. 2184

  2. 1358

  3. 1456

  4. 728


Correct Option: D
Explanation:

Let ${ S } _{ n }=2+6+18+...+486$

$\Rightarrow { S } _{ n }=2\left( 1+{ 3+3 }^{ 2 }+...+{ 3 }^{ 5 } \right) $
$\Rightarrow { S } _{ n }=2\left( \dfrac { { 3 }^{ 6 }-1 }{ 3-1 }  \right) =729-1$     ...[ sum of G.P series ]

$\Rightarrow { S } _{ n }=728$

Ans: D

$\displaystyle x(x+y)+x^{2}(x^{2}+y^{2})+x^{3}(x^{3}+y^{3})+$.......to n terms.

  1. $\displaystyle x^{2}\frac{(1-x^{2n})}{1-x^{2}}+xy\frac{(1-x^{n}y^{n})}{1-xy}$

  2. $\displaystyle x^{2}\frac{(1+x^{2n})}{1-x^{2}}+xy\frac{(1-x^{n}y^{n})}{1-xy}$

  3. $\displaystyle x^{2}\frac{(1+x^{2n})}{1+x^{2}}+xy\frac{(1+x^{n}y^{n})}{1+xy}$

  4. $\displaystyle x^{2}\frac{(1+x^{2n})}{1+x^{2}}+xy\frac{(1-x^{n}y^{n})}{1-xy}$


Correct Option: A
Explanation:

$\displaystyle x(x+y)+x^{2}(x^{2}+y^{2})+x^{3}(x^{3}+y^{3})+$.......to n terms.

$=\displaystyle \left(x^2+x^4+x^6+...n terms\right)+\left(xy+x^2y^2+... n terms\right)$

$=\displaystyle x^{2}\frac{(1-x^{2n})}{1-x^{2}}+xy\frac{(1-x^{n}y^{n})}{1-xy}$
Hence, option A

Find the value of the sum $\displaystyle \sum _{r=1}^{n}\,$ $\displaystyle \sum _{s=1}^{n}\, \delta _{rs}\, 2^r\, 3^s$ where $ \delta _{rs}$ is zero if $r \neq s$ & $\delta _{rs}$ is one if $r=s$

  1. $ \dfrac {6(6^n-1)}{5}$

  2. $ \dfrac {6(6^n+1)}{5}$

  3. $ \dfrac {5(6^n+1)}{6}$

  4. $ \dfrac {n(6^n-1)}{6}$


Correct Option: A
Explanation:

Given  $\delta _{rs}\, =\, 0   if \quad r\neq s\quad \delta  _{rs}=1\quad if \quad r=s$

$\therefore \displaystyle \sum _{r=1}^{n}\, \sum _{s=1}^{n}\, \delta _{rs}\, 2^r\, 3^s$

$=\displaystyle

\sum _{r=1}^{n} 2^r3^r\, =\, \displaystyle \sum _{r=1}^{n} 6^r\, \,

=6+6^2\, +\, 6^3+..6^n\,=\, \displaystyle \frac {6(6^n-1)}{5}$

The A.M. of the series $1, 2, 4, 8, 16, ......, 2$$^n$ is

  1. $\displaystyle \frac{2^n - 1}{n}$

  2. $\displaystyle \frac{2^{n+1} - 1}{n + 1}$

  3. $\displaystyle \frac{2^n - 1}{n+1}$

  4. $\displaystyle \frac{2^{n+1} - 1}{n}$


Correct Option: B
Explanation:

$\displaystyle A.M.=\frac { 1+2+4+8+...+{ 2 }^{ n } }{ n+1 } =\frac { { 2 }^{ n+1 }-1 }{ \left( n+1 \right) \left( 2-1 \right)  } =\frac { { 2 }^{ n+1 }-1 }{ n+1 } $

Ans: B

$\displaystyle 1+\frac{1}{4\times 3}+\frac{1}{4\times 3^{2}}+\frac{1}{4\times 3^{3}}$  is equal to 

  1. $1.120$

  2. $1.250$

  3. $1.140$

  4. $1.160$


Correct Option: A
Explanation:

Given expression = $\displaystyle 1+\frac{1}{12}+\frac{1}{36}+\frac{1}{108}=\frac{108+9+3+1}{108}=\frac{121}{108}=1.120\left ( approx \right )$

$6^{1/2}\, .\, 6^{1/4}\, .\, 6^{1/8}\, ..... \infty\, =\, ?$ 

  1. 6

  2. $\infty$

  3. 216

  4. 36


Correct Option: A
Explanation:

Given $6^{\frac{1}{2}}.6^{\frac{1}{4}}.6^{\frac{1}{8}}....\infty$
Here power of 6 are in G.P
Sum of $\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8} ...\infty$

$S _{\infty} = \dfrac{a}{1-r}$
Here $a = \dfrac{1}{2}, r = \dfrac{\dfrac{1}{4}}{\dfrac{1}{2}} = \dfrac{1}{2}$
$S _{\infty} = \dfrac{\dfrac{1}{2}}{1-\dfrac{1}{2}}$
$S _{\infty} = \dfrac{\dfrac{1}{2}}{\dfrac{1}{2}} = 1$
$\therefore S _{\infty} = 6^1 = 6$

In a geometric progression with common ratio 'q', the sum of the first 109 terms exceeds the sum of the first 100 terms by 12. If the sum of the first nine terms of the progression is $\displaystyle \frac {\lambda}{q^{100}}$ then the value of $ \lambda $ equals to

  1. $10$

  2. $14$

  3. $12$

  4. $22$


Correct Option: C
Explanation:
$r=q$ (common ratio)
${ S } _{ n }=\cfrac { a({ r }^{ n }-1) }{ (r-1) } \\ { S } _{ 109 }={ S } _{ 100 }+12\\ \cfrac { a({ q }^{ 109 }-1) }{ (q-1) } =\cfrac { a({ q }^{ 100 }-1) }{ (q-1) } +12\quad \quad (1)\\ \cfrac { a({ q }^{ 9 }-1) }{ (q-1) } =\cfrac { \lambda  }{ { q }^{ 100 } } \\ \lambda =\cfrac { a({ q }^{ 109 }-{ q }^{ 100 }) }{ (q-1) } \quad \quad \quad (2)$
From $(1)$ and $(2)$
$\lambda =12$

Let $\displaystyle S=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...$ find the sum of first $20$ terms of the series

  1. $\displaystyle \frac{2^{20}-1}{2^{20}}$

  2. $\displaystyle \frac{2^{19}-1}{2^{19}}$

  3. $\displaystyle \frac{2^{20}-1}{2^{19}}$

  4. $\displaystyle \frac{2^{19}-1}{2^{20}}$


Correct Option: C
Explanation:

$S=1+\cfrac { 1 }{ 2 } +\cfrac { 1 }{ 4 } +\cfrac { 1 }{ 8 } .......$ first $20$ terms

$n=20$ and series is in $GP$ with common difference $=\cfrac { \cfrac { 1 }{ 2 }  }{ 1 } =\cfrac { \cfrac { 1 }{ 4 }  }{ \cfrac { 1 }{ 2 }  } =\cfrac { 1 }{ 2 } $
$ a=1\quad r=\cfrac { 1 }{ 2 } $
Sum$=\cfrac { a(1-{ r }^{ n }) }{ 1-r } $  when$\quad r<1$
$ =\cfrac { 1(1-{ (\cfrac { 1 }{ 2 } ) }^{ 20 }) }{ 1-\cfrac { 1 }{ 2 }  } \ =\cfrac { (1-\cfrac { 1 }{ { 2 }^{ 20 } } ) }{ \cfrac { 1 }{ 2 }  } \ =2(1-\cfrac { 1 }{ { 2 }^{ 20 } } )\ =\cfrac { 2({ 2 }^{ 20 }-1) }{ { 2 }^{ 20 } } \ =(\cfrac { { 2 }^{ 20 }-1 }{ { 2 }^{ 19 } } )$

The $n^{th}$ term of the sequence 

$\displaystyle\frac{1}{100}$, $\displaystyle\frac{1}{10000}$, $\displaystyle\frac{1}{1000000}$, $\dots\dots$ is

  1. $(1000)^n$

  2. $10^{2n}$

  3. $10^{-2n}$

  4. $10^{-n}$


Correct Option: C
Explanation:

The given series is a Geometric Progression, with first terms $ a = \dfrac {1}{100} $ and common ratio $ r = \dfrac {T _2}{T _1} = \dfrac {\dfrac {1}{10000}}{\dfrac {1}{100}} = \dfrac {1}{100} $

For a GP, the $ nth $ term is given by $ T _n = ar^{n-1} =\dfrac {1}{100}  \times (\dfrac {1}{100})^{n-1} =(\dfrac {1}{100})^{n} = 10^{-2n}$

Find $S _n$, the sum of the first $n$ terms, for the following geometric series. $a _1=120, a _5= 1, r=-2$.

  1. $20.66$

  2. $40.66$

  3. $80.66$

  4. $100.66$


Correct Option: B
Explanation:

Given, first term, $a = 120$, common ratio, $r = -2$ and $a _5=1$
We know $S _n=\dfrac{a _1-a _nr}{1-r}$
$S _n=\dfrac{120-(-2)}{1-(-2)}$
$S _n=\dfrac{120-(-2)}{1-(-2)}$
$S _n=\dfrac{122}{3}$
$S _n=40.66$

Find the sum of the first $6$ terms of the geometric series $80 - 20 + 5 +.....$

  1. $63.984$

  2. $32.451$

  3. $54.876$

  4. $25.458$


Correct Option: A
Explanation:

First term, $a$ is $80$
Common ratio, $r =$ $\dfrac{-20}{80}=\dfrac{-1}{4}$
$S _n=\dfrac{a(1-r^2)}{1-r}$
$S _n=\dfrac{80(1-(\frac{-1}{4})^2)}{1-\frac{-1}{4}}$
$S _n = \dfrac{79.98}{1.25}$
$S _n = 63.98$

Find the sum of the geometric series $4 + 2 + 1 +... +$ $\dfrac{1}{16}$

  1. $\dfrac{17}{16}$

  2. $\dfrac{107}{16}$

  3. $\dfrac{117}{16}$

  4. $\dfrac{127}{16}$


Correct Option: D
Explanation:

Given series is $4+2+1+.....+\dfrac {1}{16}$
First term, $a$ is $4$
Common ratio, $r =$ $\dfrac{2}{4}=\dfrac{1}{2}$
Use the formula for the sum of the geometric series.
$ar^n$ is a next term.
$\dfrac{1}{16}=\dfrac{1}{2}\times \dfrac{1}{16}=\dfrac{1}{32}$ is the next term.
$S=\dfrac{a-ar^{n+1}}{1-r}$
$S=\dfrac{4-\frac{1}{32}}{1-\frac{1}{2}}$
$S=\dfrac{\frac{127}{32}}{\frac{1}{2}}$
$S=\dfrac{127}{16}$

What is $S _6$ of the geometric progression $6, 12, 24...$?

  1. $178$

  2. $278$

  3. $378$

  4. $478$


Correct Option: C
Explanation:

Given series is $6,112,24,....$
To find the sum of the first $S _n$ terms of a geometric sequence by using the formula,
Here $a = 6, r = 2, n = 6$
$S _n = \dfrac{a _1(1-r^n)}{1-r}$
$S _6 = \dfrac{6(1-(2)^6)}{1-2}$
$ = \dfrac{6(-63)}{-1}$
$ = 378$

Find $3 + 12 + 48 +...$ up to $5$ terms.

  1. $1023$

  2. $2023$

  3. $3023$

  4. $4023$


Correct Option: A
Explanation:

Given series is $3+12+48+....$ upto $5$ terms
To find the sum of the first $S _n$ terms of a geometric sequence by using the formula,
Here $a = 3, r = 4, n = 5$
$S _n = \dfrac{a _1(1-r^n)}{1-r}$
$S _5 = \dfrac{3(1-(4)^{5})}{1-4}$
$ = \dfrac{3(-1023)}{-3}$
$ = 1023$

Determine the sum of the first 8 terms of the G.P. $1, 2, 4, 8...$

  1. $256$

  2. $255$

  3. $254$

  4. $253$


Correct Option: B
Explanation:
Given series is $1,2,4,8,....$
To find the sum of the first $S _n$ terms of a geometric sequence using the formula.
From given question, we have
$a = 1, r = 2, n = 8$
Therefore, $S _n = \dfrac{a _1(1-r^n)}{1-r}$
$\Rightarrow S _8 = \dfrac{1(1-(2)^{8})}{1-2}$
$\Rightarrow S _8 = \dfrac{1(-255)}{-1}$
$\Rightarrow S _8 = 255$

Evaluate the sum of the first nine terms of the geometric sequence $5, 10, 20,...$

  1. $1555$

  2. $2555$

  3. $3555$

  4. $4555$


Correct Option: B
Explanation:

Given sequence is $5,10,20,....$
To find the sum of the first $S _n$ terms of a geometric sequence using the formula
Here $a = 5, r = 2, n = 9$
We know $S _n = \dfrac{a _1(1-r^n)}{1-r}$
$\Rightarrow S _9 = \dfrac{5(1-2^{9})}{1-2}$
$\Rightarrow S _9 = \dfrac{-2555}{-1}$
$\Rightarrow S _9 = 2555$

Calculate the sum of first $20$ terms of the G.P. $-1, 1, -1, 1....$

  1. $0$

  2. $1$

  3. $2$

  4. $3$


Correct Option: A
Explanation:
Given series is $-1,1,-1,1,....$
Here $a = -1, r = -1$
We know the formula, $S _n = \dfrac{a _1(1-r^n)}{1-r}$
$S _{20} = \dfrac{1(1-(-1)^{20})}{1-(-1)}$
$ = \dfrac{1(1-(-1)^{20})}{2}$
$= 0$

The sum of $6^{th}$ term in the geometric series $4, 12, 36...$ is

  1. $1456$

  2. $2456$

  3. $3456$

  4. $4456$


Correct Option: A
Explanation:

Given sequence is $4,12, 36$
To find the sum of the first $S _n$ terms of a geometric sequence using the formula
Here $a = 4, r = 3, n = 6$
We know $S _n = \dfrac{a _1(1-r^n)}{1-r}$
$\Rightarrow S _6 = \dfrac{4(1-3^{6})}{1-3}$
$\Rightarrow S _6 = \dfrac{-2912}{-2}$
$\Rightarrow S _6 = 1456$

What is the sum of G.P. $1, 3, 9, 27,.....$ up to $7$ numbers?

  1. $1093$

  2. $2093$

  3. $3093$

  4. $4093$


Correct Option: A
Explanation:

Given, $a = 1, r = 3$
$S _n = \dfrac{a _1(1-r^n)}{1-r}$
$S _7 = \dfrac{1(1-3^7)}{1-3}$
$ = \dfrac{1(1-3^7)}{-2}$
$ = 1093$

What is the sum of the first five terms of the geometric sequence $5, 15, 45, ... $?

  1. $105$

  2. $305$

  3. $505$

  4. $605$


Correct Option: D
Explanation:

Given series is $5,15,45,...$
Here first term $a = 5$ and common ratio $=r = 3$
$S _n = \dfrac{a _1(1-r^n)}{1-r}$
$S _{5} = \dfrac{5(1-(3)^{5})}{1-(3)}$
$ = \dfrac{5(1-(3)^{5})}{-2}$
$ = 605$

Find $4 + 12 + 36 +..... $ upto $6$ terms.

  1. $164$

  2. $264$

  3. $364$

  4. $464$


Correct Option: C
Explanation:

Given series is $4+12+36+....$ upto $6$ terms
Here $a = 4, r = 3$
We know $S _n = \dfrac{a _1(1-r^n)}{1-r}$
$S _{6} = \dfrac{1(1-(3)^{6})}{1-(3)}$
$ = \dfrac{1(1-(3)^{6})}{-2}$
$ = 364$

If the first term and common ratio is $5$, find the sum of 8th term of infinite G.P.

  1. $188280$

  2. $288280$

  3. $388280$

  4. $488280$


Correct Option: D
Explanation:

Given, first term $=a = 5$, common ratio $=r = 5$, $n=8$
We know $S _n = \dfrac{a _1(1-r^n)}{1-r}$
$S _{8} = \dfrac{5(1-(5)^{8})}{1-(5)}$
$ = \dfrac{5(1-(5)^{8})}{-4}$
$ = 488280$

The value of $1 + 2 + 4 + 8....$ of G.P., where $n=6$  is

  1. $61$

  2. $62$

  3. $63$

  4. $64$


Correct Option: C
Explanation:
Given series is $1+2+4+8+....$
Here $a = 1, r = 2$
Also given $n=6$
We know $S _n = \dfrac{a _1(1-r^n)}{1-r}$
$S _{6} = \dfrac{1(1-(2)^{6})}{1-(2)}$
$ = \dfrac{1(1-(2)^{6})}{-1}$
$ = 63$

Calculate sum of eleventh term of the geometric sequence $3, 6, 12, 24, ... $

  1. $3141$

  2. $6141$

  3. $2141$

  4. $5141$


Correct Option: B
Explanation:

Given series is $3,6,12,24,....$
Here first term $=a = 3$ and common ratio $=r = 2$
$S _n = \dfrac{a _1(1-r^n)}{1-r}$
$S _{11} = \dfrac{3(1-(2)^{11})}{1-(2)}$
$ = \dfrac{3(1-(2)^{11})}{-1}$
$ = 6141$

The sum of first $n$ terms of an G.P. is

  1. $S _n = \cfrac{a _1(1-r^n)}{1-r}$

  2. $S _n = \cfrac{a _1(1+r^n)}{1-r}$

  3. $S _n = \cfrac{a _1(1-r^n)}{1+r}$

  4. $S _n = \cfrac{a _1(1-r^n)}{r-1}$


Correct Option: A
Explanation:

A GP can be written as:

$a,ar,ar^2, ar^3..............,ar^{n-1}$
$\text{sum} = a+ar+ar^2+ar^3+.........+ar^{n-1}$
$\text{sum} = a(r^{n-1}+r^{n-2}+r^{n-3}+r^{n-4}+...........+r+1)$
We know that:
$\dfrac{x^n -1}{x-1} = x^{n-1}+x^{n-2}+x^{n-3}+.............+x+1$
Thus $\text{sum} = a\left (\dfrac{r^n -1}{r-1}\right)$

A rubber ball is dropped from a height of $10$ meters. If the ball always rebounds $\dfrac {4}{5}$ the distance it has fallen, calculate, how far, in meters, will the ball have travelled at the moment it hits the ground for the fourth time?

  1. $4.10$

  2. $5.12$

  3. $29.52$

  4. $43.92$

  5. $49.04$


Correct Option: E
Explanation:
  • for the first time it hits the ground , it travels $10$ m
  • for the second time it hits the ground , it travels $2 \times 4/5 \times 10 = 16+10 =26$
  • for the third time it hits the ground , it travels $ 2\times 4/5 \times 4/5 \times 10 +26 =64/5+26 = 38.8$
  • for the fourth time it hits the ground , it travels $2 \times 4/5 \times 4/5 \times 4/5 \times 10 +38.8 = 256/25 + 38.8 =49.04$

Find the sum of odd integers between $1$ and $1000$ which are divisible by $3$.

  1. $83667$

  2. $54954$

  3. $99994$

  4. $79894$


Correct Option: A
Explanation:
Odd integers divisible by 3 are: $3,9,15,21.....999$
Let $a=3$   and   $d=6$
$\therefore T _n=999=3+(n-1)6$
$\Rightarrow n-1=\dfrac{996}{6}=166$
$\therefore n=167$
$\therefore S _n=\dfrac{167}{2}[2\times 3+(167-1)6]=83667$

How many terms of the series $1+3+9+ ...$sum to $121$?

  1. $5$

  2. $6$

  3. $4$

  4. $3$


Correct Option: A
Explanation:

The given series is a G.P
Sum of n terms of a G.P is $ a* {(\frac{(r^n\;-\;1)}{(r-1)})} $
Here a=1 and r=3
Substituting it in the equation and finding n we get n=5

What is the sum of first eight terms of the series $1-\cfrac { 1 }{ 2 } +\cfrac { 1 }{ 4 } -\cfrac { 1 }{ 8 } +.....$?

  1. $\cfrac { 89 }{ 128 } $

  2. $\cfrac { 57 }{ 384 } $

  3. $\cfrac { 85 }{ 128 } $

  4. None of the above


Correct Option: C
Explanation:

Given series is a sum of terms of GP with common ratio $-\dfrac{1}{2}$
Sum of $n$ terms of GP with common ratio $r$ and first term $a$ is $\dfrac { a(1-r^{ n }) }{ 1-r } $
Putting $a=1,n=8$ and $r=-\dfrac { 1 }{ 2 } $ in above equation, we have 

Sum $=\dfrac { 1(1-(-\frac { 1 }{ 2 } )^{ 8 }) }{ 1-(-\frac { 1 }{ 2 } ) } =\dfrac { 1-\frac { 1 }{ 256 }  }{ \frac { 3 }{ 2 }  } =\dfrac { 255 }{ 128\times 3 } =\dfrac { 85}{128} $
Hence, option C is correct

What is the greatest value of the positive integer n satisfying the condition $1 + \dfrac{1}{2} + \dfrac{1}{4} + \dfrac{1}{8} +  ...... + \dfrac{1}{2^{n - 1}} < 2 - \dfrac{1}{1000}$?

  1. $8$

  2. $9$

  3. $10$

  4. $11$


Correct Option: C
Explanation:

Given : $1+\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+......+\dfrac{1}{2^{n−1}} < 2−\dfrac{1}{1000}$

Left side forms a sum of a finite geometric series with first term $1$ and common ratio $\dfrac{1}{2}$ with $n$ terms.
 Sum $ =\dfrac{a(1-r^{ n })}{(1-r)} = \dfrac{1(1-(0.5)^{ n })}{0.5} = 2-{ 2 }^{ 1-n }$
 So, $2-{ 2 }^{ 1-n } < 2-\dfrac { 1 }{ 1000 }$  
We have,
${ 2 }^{ n-1 } < 1000$ we get the max value of $n = 10$.
Hence, C is correct.

The value of the sum $\sum _{ n=1 }^{ 13 }{ \left( { i }^{ n }+{ i }^{ n+1 } \right)  } $ where $i=\sqrt { -1 } $ is:

  1. $i$

  2. $-i$

  3. $0$

  4. $i-1$


Correct Option: D
Explanation:

$\displaystyle \sum _{ n=1 }^{ 13 }{ ({ i }^{ n }+{ i }^{ n+1 }) }$ 

$=\displaystyle (i+1)\sum _{ n=1 }^{ 13 }{ { i }^{ n } } $
$=(i+1)\dfrac { (i({ i }^{ 13 }-1)) }{ i-1 } $
$=(i+1)\dfrac { (i(i-1)) }{ i-1 } $
$=(i+1)(i)$
$=i-1$
Hence, the correct answer is D.

Sum $1 + 2a + 3a^{2} + 4a^{3} + ....$ to $n$ terms.

  1. $\dfrac{1+(a^{n})}{(a-1)^{2}}-\dfrac{na^{n}}{1+a}$

  2. $\dfrac{1-2(a^{n})}{(a-1)^{2}}+\dfrac{na^{n}}{1-2a}$

  3. $\dfrac{1-(a^{n})}{(a-1)^{2}}-\dfrac{na^{n}}{1-a}$

  4. none of these


Correct Option: C
Explanation:

Let $S=1+2a+3a^{2}+4a^{3}+$   ..........$+na^{n-1}$
Multiply both sides by $a$, we get
$Sa=0+a+2a^{2}+3a^{3}$   .............$(n-1)a^{n-1}+na^{n}$
Subtract both equations,
$S(1-a)=1+a+a^{2}+a^{3}$    .............$a^{n-1}-na^{n}$
Clearly above series is G.P
Common ratio $= a$
$S(1-a)=\dfrac{1(a^{n}-1)}{a-1}-na^{n}$
$S=\dfrac{1-(a^{n})}{(a-1)^{2}}-\dfrac{na^{n}}{1-a}$

The geometric mean if the series $1, 2, 4,...., 2^n$, is

  1. $2^{n + (1/2)}$

  2. $2^{(n + 1)/2}$

  3. $2^{n - (1/2)}$

  4. $2^{n/2}$


Correct Option: D
Explanation:

$1, 2, 4, ....., 2^n$


No. of terms $=n+1$

$\therefore G.M.= (1.2.4......2^n)^{\dfrac{1}{n+1}}$
$= (2^{1+2+3+...+n})^{\dfrac{1}{n+1}}$

$= (2)^{\dfrac{n(n+1)}{2}.\dfrac{1}{n+1}}$

$=2^{n/2}$

If the sum $1+2+3 +....+ K$ is a perfect square N$^{2}$ and if N is less than 100, then the possible values for K are: 

  1. only 1

  2. 1 and 8

  3. only 8

  4. 8 and 49

  5. 1,8, and 49


Correct Option: E
Explanation:
S= K(K + l)/2 = $N^{2}$. The possible values for N$^{2}$ are $1^{2}, 2^{2}, 3^{2}.... 99^{2}$;
For K to be integral, the discriminant 1 + 8N$^{2}$ of the equation $K^{2} + K- 2N$= 0 must be a perfect square. This fact reduces the possible values for $N^{2}$ to $1^{2}, 6^{2}, and 35^{2}$. Hence the values of K are 1, 8, and 49.
Note: There are ways of shortening the number of trials for N2 still further.but these involve a knowledge of number-theoretic theorems. The shortest way to do this problem is by testing the choices given.

The sum to infinity of the terms of an infinite geometric progression is $6$. The sum of the first two terms is $4\dfrac {1}{2}$. The first term of the progression is

  1. $3$ or $1\dfrac {1}{2}$

  2. $1$

  3. $2\dfrac {1}{2}$

  4. $6$

  5. $9$ or $3$


Correct Option: E
Explanation:

Let the first two terms be $a$ and $ar$ where $-1 < r < 1$.
$\therefore a(1 + r) = 4\dfrac {1}{2}$
Since $s = a/(1 - r) = 6, a = 6(1 - r)$
$\therefore 6(1 - r)(1 + r) = 4\dfrac {1}{2}; \therefore r = \pm \dfrac {1}{2}; \therefore a = 3$ or $9$.

The sum of $2n$ terms of a series of which every even term is $'a'$ times the terms before it, and every odd term $'c'$ times the terms before it, the first term being unity, is

  1. $\dfrac { \left( 1-a \right) \left( { a }^{ n }{ c }^{ n }-1 \right) }{ ac-1 }$

  2. $\dfrac { \left( 1+a \right) \left( { a }^{ n }{ c }^{ n }-1 \right) }{ ac+1 }$

  3. $\dfrac { \left( 1+a \right) \left( { a }^{ n }{ c }^{ n }-1 \right) }{ ac-1 }$

  4. $None\ of\ these$


Correct Option: C
Explanation:

$\begin{array}{l} { T _{ 1 } }=1 \ { T _{ 2 } }=a \ { T _{ 3 } }=Ca \ { T _{ 4 } }=C{ a^{ 2 } } \ { T _{ 2n } }=a\frac { { 2n } }{ 2 } \cdot C\frac { { 2n } }{ 2 } -1={ a^{ n } }{ C^{ n-1 } } \ { 5 _{ 2n } }=1+a+ca.....{ a^{ n } }{ C^{ n-1 } } \ =1+\left[ { a+c{ a^{ 2 } }+{ c^{ 2 } }{ a^{ 3 } }...{ a^{ n } }{ c^{ n-1 } } } \right]  \ +\left[ { ca+{ c^{ 2 } }{ a^{ 2 } }+{ c^{ 3 } }{ a^{ 3 } }.....{ c^{ n-1 } }{ a^{ n-1 } } } \right]  \ =1+\frac { { a\left( { { a^{ n } }{ c^{ n-1 } } } \right)  } }{ { ac-1 } } +\frac { { ac\left( { { a^{ n-1 } }{ c^{ n-1 } }-1 } \right)  } }{ { ac-1 } }  \ =\frac { { \left( { { a^{ n } }{ c^{ n } }-1 } \right) \left( { a+1 } \right)  } }{ { ac-1 } }  \end{array}$

The sum of $10$ terms of the series $0.7 + .77 + .777 + \ldots \ldots \ldots$ is

  1. $\dfrac { 7 } { 9 } \left( 89 + \dfrac { 1 } { 10 ^ { 10 } } \right)$

  2. $\dfrac { 7 } { 81 } \left( 89 + \dfrac { 1 } { 10 ^ { 10 } } \right)$

  3. $\dfrac { 7 } { 81 } \left( 89 + \dfrac { 1 } { 10 ^ { 9 } } \right)$

  4. $\dfrac { 7 } { 9 } \left( 89 + \dfrac { 1 } { 10 ^ { 9 } } \right)$


Correct Option: B
Explanation:
$0.7+0.77+0.777+......$
$=7\left( 0.1+0.11+0.111+...... \right) $
$=\dfrac { 7 }{ 9 } \left( 0.9+0.99+0.999+...... \right) $
$=\dfrac { 7 }{ 9 } \left( 1-0.1+1-0.1+1-0.001+...... \right) $
$=\dfrac { 7 }{ 9 } \left( 10-\left( 0.1+0.01+0.001+...... \right)  \right) $
$=\dfrac { 7 }{ 9 } \left( 10-\dfrac { 0.1\left( 1-{ 10 }^{ -10 } \right)  }{ 1-0.1 }  \right) =\frac { 7 }{ 9 } \left( 10-\dfrac { 0.1\left( { 10 }^{ 10 }-1 \right)  }{ 0.9\times { 10 }^{ 10 } }  \right) =\dfrac { 7 }{ 9 } \left( 10-\dfrac { 1 }{ 9 } +\dfrac { 1 }{ 9\times { 10 }^{ 10 } }  \right) $
$=\dfrac { 7 }{ 9 } \left( \dfrac { 89 }{ 9 } +\dfrac { 1 }{ 9\times { 10 }^{ 10 } }  \right) $
$=\dfrac { 7 }{ 81 } \left( 89+\dfrac { 1 }{ { 10 }^{ 10 } }  \right) $      [B]

The sum of series $\displaystyle \frac{3}{4} + \frac{15}{16} + \frac{63}{64}+ ..... $ up to $n$ terms is

  1. $\displaystyle n - \frac{4^n}{3} - \frac{1}{3}$

  2. $\displaystyle n + \frac{4^{-n}}{3} - \frac{1}{3}$

  3. $\displaystyle n + \frac{4^n}{3} - \frac{1}{3}$

  4. $\displaystyle n - \frac{4^{-n}}{3} - \frac{1}{3}$


Correct Option: B
Explanation:

For $n=1$, we have
$\displaystyle n - \dfrac{4^n }{3} - \dfrac{1}{3} = 1  - \dfrac{4}{3} - \dfrac{1}{3} = - \dfrac{2}{3}$
$\displaystyle n + \dfrac{4^n}{3} - \dfrac{1}{3} = 1 + \dfrac{4}{3} - \dfrac{1}{3} = 2$
$n - \displaystyle \dfrac{4^{-n}}{3} + \dfrac{1}{3} = 1 - \dfrac{4^{-1}}{3} + \dfrac{1}{3}= \dfrac{5}{4}$
Also, for $n = 2$, we have
$ \displaystyle n + \dfrac{4^{-n}}{3} - \dfrac{1}{3} = 2 + \dfrac{1}{48} - \dfrac{1}{3} = \dfrac{27}{16}$ and $\displaystyle \dfrac{3}{4} + \dfrac{15}{16} = \dfrac{27}{16}$
Hence, option (b) is correct.
ALTER We have,
$\displaystyle \dfrac{3}{4} + \dfrac{15}{16} + \dfrac{63}{64}+ ..... $ to n terms
$= \displaystyle \dfrac{2^2 - 1}{2^2} + \dfrac{2^4 - 1}{2^4} + \dfrac{2^6 - 1}{2^6}+ .... $ to n terms.
$= \displaystyle \left ( 1 - \dfrac{1}{2^2} \right ) + \left ( 1 - \dfrac{1}{2^4} \right ) + \left( 1 - \dfrac{1}{2^6} \right ) + ..... $ to n terms
$= n - \left \{ \dfrac{1}{2^2} + \dfrac{1}{2^4} + \dfrac{1}{2^6} + .... \text{to n terms} \right \}$
$= n \displaystyle - \dfrac{1}{2^2} \left \{ \dfrac{1 - \left (\dfrac{1}{2^2} \right )^n }{1 - \dfrac{1}{2^2}} \right \}$
$= \displaystyle n - \dfrac{1}{3} (1 - 4^{-n})$
$= n + \displaystyle \dfrac{4^{-n}}{3} - \dfrac{1}{3}$

If the sum of $n$ terms of a GP (with common ratio $r$) beginning with the $\displaystyle p^{th}$ term is $k$ times the sum of an equal number of the same series beginning with the $\displaystyle q^{th}$ term, then the value of $k$ is

  1. $\displaystyle r^{p/q}$

  2. $\displaystyle r^{q/p}$

  3. $\displaystyle r^{p-q}$

  4. $\displaystyle r^{p+q}$


Correct Option: C
Explanation:

$p^{th}$ term of the series  $=ar^{p-1}$     ($a$ is first term)

$q^{th }$ term of th series $= ar^{q-1}$
Sum of $n$ term beginning with $p^{th} $ term 
$=\dfrac{ar^{p-1}(r^n - 1)}{r-1}$
Sum of $n$ term beginning with $q^{th} $ term 
$=\dfrac{ar^{q-1}(r^n - 1)}{r-1}$
Sum of $n$ term beginning with $p^{th} $ term $= k$ (sum of $n$ term beginning with $q^{th} $ term )
Thus $\dfrac{ar^{p-1}(r^n - 1)}{r-1}$$=k\dfrac{ar^{q-1}(r^n - 1)}{r-1}$
$\Rightarrow k = \dfrac{r^{p-1}}{r^{q-1}}$
$\Rightarrow k= r^{p-q}$

The sum of $1 + \dfrac {2}{5} + \dfrac {3}{5^{2}} + \dfrac {4}{5^{3}} + ....$ up to $n$ terms is

  1. $\dfrac {25}{16} - \dfrac {4n + 5}{16\times 5^{n - 1}}$

  2. $\dfrac {3}{4} - \dfrac {2n + 5}{16\times 5^{n + 1}}$

  3. $\dfrac {3}{7} - \dfrac {3n + 5}{16\times 5^{n - 1}}$

  4. $\dfrac {1}{2} - \dfrac {5n + 1}{3\times 5^{n + 2}}$


Correct Option: A
Explanation:
Let $S=1+\cfrac { 2 }{ 5 } +\cfrac { 3 }{ { 5 }^{ 2 } } +\cfrac { 4 }{ { 5 }^{ 3 } } +...\quad \quad (1)$
Multiplying $S$ with $\cfrac{1}{5}$ we get
$\cfrac { 1 }{ 5 } S=\cfrac { 1 }{ 5 } +\cfrac { 2 }{ { 5 }^{ 2 } } +\cfrac { 3 }{ { 5 }^{ 3 } } +\cfrac { 4 }{ { 5 }^{ 4 } } +...\quad \quad (2)$
Subtracting $(2)$ from $(1)$
$\quad \quad \quad S\;\;=1+\cfrac { 2 }{ 5 } +\cfrac { 3 }{ { 5 }^{ 2 } } +\cfrac { 4 }{ { 5 }^{ 3 } } +....{ T } _{ n }\\ \underline { \quad \quad -\cfrac { 1 }{ 5 } S=-\left[ \cfrac { 1 }{ 5 } +\cfrac { 2 }{ { 5 }^{ 2 } } +\cfrac { 3 }{ { 5 }^{ 3 } } +...{ T } _{ n-1 } \right] -{ T } _{ n } } \\ \left( 1-\cfrac { 1 }{ 5 }  \right) S=1+\cfrac { 1 }{ 5 } +\cfrac { 1 }{ { 5 }^{ 2 } } +\cfrac { 1 }{ { 5 }^{ 3 } } +.....-{ T } _{ n-1 }\\ \left( 1-\cfrac { 1 }{ 5 }  \right) S=\cfrac { (1)\left( 1-\cfrac { 1 }{ { 5 }^{ n } }  \right)  }{ \left( 1-\cfrac { 1 }{ 5 }  \right)  } -\cfrac { n }{ { 5 }^{ n-1 } } \\ \cfrac { 4 }{ 5 } S=\cfrac { 5 }{ 4 } -\cfrac { (4n+5) }{ 4\times { 5 }^{ n } } \\ S=\cfrac { 25 }{ 16 } -\cfrac { (4n+5) }{ 16\times { 5 }^{ n-1 } } $

In a $G.P$. the ratio of the sum of the first eleven terms to the sum of last eleven terms is $\displaystyle \frac{1}{8}$ and the ratio of the sum of all terms without the first nine to the sum of all the terms without the last nine is $2$. Then the number of terms of the $G.P$ is

  1. $15$

  2. $43$

  3. $38$

  4. $56$


Correct Option: C
Explanation:

We have: 
$\dfrac { \frac { a({ r }^{ 11 }-1) }{ r-1 }  }{ \frac { a{ r }^{ n-11 }({ r }^{ 11 }-1) }{ r-1 }  } =\dfrac { 1 }{ 8 }$
$\Rightarrow { r }^{ n-11 }=8$ ...(i)
Also:
$\dfrac { \frac { a{ r }^{ 9 }({ r }^{ 11 }-1) }{ (r-1) }  }{ \frac { a({ r }^{ n-9 }-1) }{ (r-1) }  } =2$
$\Rightarrow { r }^{ 9 }=2 $
$\Rightarrow r={ 2 }^{ \frac { 1 }{ 9 }  }$ ...(ii)
Substituting (ii) in (i):
${ 2 }^{ \frac { n-11 }{ 9 }  }={ 2 }^{ 3 }$
$\Rightarrow \dfrac { n-11 }{ 9 } =3$
$\Rightarrow n=38$
Hence, (c) is correct.

- Hide questions