0

Estimating square roots - class-VIII

Attempted 0/61 Correct 0 Score 0
Find the square root by guessing the units and tens digit:
$2116$
  1. $46$

  2. $50$

  3. $52$

  4. $58$


Correct Option: A
Explanation:

Its unit digit is 6 and tens digit is 1


For unit digit 6 , there are two possibilities either the square root end with 6 or 4

And according to options $46$ is the correct option

The number which exceeds its positive square root by $12$ is

  1. $9$

  2. $16$

  3. $25$

  4. None of these


Correct Option: B
Explanation:
Let the positive number be x according to question,

$\sqrt{x}+12=x$

$\Rightarrow \sqrt{x}=x-12$

Squaring both sides,

$\Rightarrow x=x^{2}-24x+144$

$x^{2}-25x+144=0$

$x^{2}-16x-9x+144=0$

$x(x-16)-9(x-16)=0$

$(x-9)(x-16)=0$

 $  (x-9)=0 $ or $    (x-16)=0 $

 $ x=9 $  or $ x=16 $

So, the number is $16$.

Find the square root of which of the following numbers will be the least :

  1. $7\dfrac{58}{81}$

  2. $11\dfrac{14}{25}$

  3. $10\dfrac{1}{36}$

  4. $0.3481$


Correct Option: D
Explanation:

$A.$


$7\dfrac{58}{81}=\dfrac{625}{81}$


$\Rightarrow$  $\sqrt{\dfrac{625}{81}}=\dfrac{25}{9}=2.77$

$B.$

$11\dfrac{14}{25}=\dfrac{289}{25}$

$\Rightarrow$  $\sqrt{\dfrac{289}{25}}=\dfrac{17}{5}=3.4$

$C.$

$10\dfrac{1}{36}=\dfrac{361}{36}$

$\Rightarrow$  $\sqrt{\dfrac{361}{36}}=\dfrac{19}{6}=3.16$

$D.$

$0.3481=\dfrac{3481}{10000}$

$\Rightarrow$  $\sqrt{\dfrac{3481}{10000}}=\dfrac{59}{100}=0.59$

$\therefore$  We can see, $0.3481$  has least square root.

Simlify: $\sqrt{\dfrac{-17}{144}-i}$

  1. $ \pm \left( {\dfrac{3}{2} - \dfrac{i}{3}} \right)$

  2. $ \pm \left( {\dfrac{3}{4} - \dfrac{{2i}}{3}} \right)$

  3. $ \pm \left( {\dfrac{3}{5} - \dfrac{{5i}}{6}} \right)$

  4. $ \pm \left( {\dfrac{2}{3} - \dfrac{{3i}}{4}} \right)$


Correct Option: D
Explanation:

We know that,

${{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab$

 

Now, let,

$ -2ab=-i $

$ ab=i $

 

Now, consider $\dfrac{-17}{144}$. We can write it as,

$\dfrac{-17}{144}=\dfrac{64-81}{9\times 16}=\dfrac{4}{9}-\dfrac{9}{16}$

 

Thus,

$ \sqrt{\dfrac{-17}{144}-i}=\sqrt{\dfrac{4}{9}-\dfrac{9}{16}-i} $

$ =\sqrt{{{\left( \dfrac{2}{3} \right)}^{2}}+{{\left( i \right)}^{2}}{{\left( \dfrac{3}{4} \right)}^{2}}-2\times \left( \dfrac{2}{3} \right)\times \left( \dfrac{3i}{4} \right)} $

$ =\sqrt{{{\left( \dfrac{2}{3}-\dfrac{3i}{4} \right)}^{2}}} $

$ =\pm \left( \dfrac{2}{3}-\dfrac{3i}{4} \right) $

 

Hence, this is the required result.

The approximate value of$\sqrt { { \left( 1.97 \right)  }^{ 2 }{ \left( 4.02 \right)  }^{ 2 }{ \left( 3.98 \right)  }^{ 2 } }$

  1. $31.59 $

  2. $5.099$

  3. $5.009$

  4. $5.734$


Correct Option: A
Explanation:

We have,

$ \sqrt{{{\left( 1.97 \right)}^{2}}{{\left( 4.02 \right)}^{2}}{{\left( 3.98 \right)}^{2}}} $

$ =1.97\times 4.02\times 3.98 $

$ =31.59 $

Hence, this is the answer.

Find the square root correct upto $2$ decimals $60.92$.

  1. $7.92$

  2. $7.81$

  3. $7.27$

  4. $7.56$


Correct Option: B
Explanation:
$\sqrt{6092}$

$=\sqrt{\dfrac{6092}{100}}$

$=\dfrac{78.05}{10}$

$=7.81$

The positive square root of $( \sqrt { 48 } - \sqrt { 45 } )$ is _________.

  1. $\frac { \sqrt [ 4 ] { 3 } } { \sqrt { 2 } } ( \sqrt { 5 } - \sqrt { 3 } )$

  2. $\frac { \sqrt [ 4 ] { 3 } } { 2 } ( \sqrt { 5 } - \sqrt { 3 } )$

  3. $\frac { \sqrt { 2 } } { \sqrt [ 4 ] { 3 } } ( \sqrt { 5 } - \sqrt { 3 } )$

  4. $\frac { \sqrt [ 4 ] { 3 } } { \sqrt { 2 } } ( \sqrt { 5 } + \sqrt { 3 } )$


Correct Option: A
Explanation:

Solving $(\sqrt{48}-\sqrt{45})$

$4\sqrt{3}-3\sqrt{5}$

$\dfrac{\sqrt{3}}{2}(8-2\sqrt{15})$

$\dfrac{\sqrt{3}}{2}(3+5-2\sqrt{15})$

$\dfrac{\sqrt{3}}{2}(\sqrt{3^2}+\sqrt{5^2}-2\sqrt{5}\times\sqrt{3})$

$\dfrac{\sqrt3}{2}(\sqrt5-\sqrt3)^2$

$Now \ Finding\ Square \ Root$

$\pm{ \dfrac{3^{\frac{1}{4}}}{\sqrt2}(\sqrt5-\sqrt3)}$

$So \ it's \ positive \ root \ is \ $$ \dfrac{3^{\frac{1}{4}}}{\sqrt2}(\sqrt5-\sqrt3)$
Correct Answer is $A$

If $\sqrt{2}=1.414$ then the value of $\sqrt{8}$ is

  1. $2.828$

  2. $1.828$

  3. $2.282$

  4. $2.288$


Correct Option: A
Explanation:
$\sqrt{2}=1.414$(given)
$\sqrt{8}=\sqrt{2\times 2\times 2}=2\sqrt{2}=2\times 1.414=2.828$
$\therefore \sqrt{8}=2.828$

Find the square root of 
$5-2\sqrt{6}$

  1. $\sqrt{13}-\sqrt{2}$

  2. $\sqrt{3}-\sqrt{2}$

  3. $\sqrt{5}-\sqrt{3}$

  4. $\sqrt{5}-\sqrt{2}$


Correct Option: B
Explanation:

$5-2\sqrt{6}=3+2-2\sqrt{6}$


$=({\sqrt{3}})^2+({\sqrt{2}})^2-2\sqrt{3}\times \sqrt {2}$

Using $(a-b)^2=a^2+b^2-2ab$


${5-2\sqrt{6}}=(\sqrt{3}-\sqrt{2})^2$

$\sqrt {5-2\sqrt{6}}=(\sqrt{3}-\sqrt{2})$

$So, \  the \  square \  root \  of \  (5-2\sqrt{6})=\sqrt{3}-\sqrt{2}$

$\sqrt{(a - b)^2} + \sqrt{(b - a)^2}$ is

  1. Always zero

  2. Never zero

  3. Positive if and only if a > b

  4. Positive only if a $\ne$ b


Correct Option: D
Explanation:

$\sqrt{(a - b)^2} + \sqrt{(b - a)^2}$
$= |a - b| + |b - a|$

Now, If $a > b$
$= a - b + a - b$
$= 2a - 2b$...+ ve

If $b > a$
$= b - a + b - a$
$= 2b - 2a$...+ ve
Therefore, if $a \ne b$ then the given equation is always positive.
Hence, option 'D' is correct.

The value of $\displaystyle \frac{1\, +\, \sqrt{0.01}}{1\, -\, \sqrt{0.1}}$ is close to .......... .

  1. 0.6

  2. 1.1

  3. 1.6

  4. 1.7


Correct Option: C
Explanation:

$\displaystyle \frac{1\, +\, \sqrt{0.01}}{1\, -\, \sqrt{0.1}}\, =\, \displaystyle \frac{1\, +\, 0.1}{1\, -\, 0.32}\, =\, \displaystyle \frac{1.1}{0.68}\, =\, 1.6$

If $\sqrt{6}\, =\, 2.55,$ then the value of $\displaystyle {\sqrt{\frac{2}{3}\, +\, 3\frac{3}{2}}}$ is

  1. 4.48

  2. 4.49

  3. 4.50

  4. None of these


Correct Option: D
Explanation:
$ {\sqrt{\cfrac{2}{3} + 3\cfrac{3}{2}}}$
$=  {\cfrac{\sqrt{2}}{\sqrt{3}} \times \cfrac{\sqrt{3}}{\sqrt{3}} + 3 \times \cfrac{\sqrt{3}}{\sqrt{2}} \times \cfrac{\sqrt{2}}{\sqrt{2}}}$
$=  {\cfrac{\sqrt{6}}{3} + \cfrac{3\sqrt{6}}{2} = \cfrac{2.55}{3} + \cfrac{3 \times 2.55}{2}}$
$=  {\cfrac{2.55}{3} + \cfrac{7.65}{2} = \cfrac{5.10 + 22.95}{6}}$
$=  \cfrac{28.05}{6} = 4.675$

$\displaystyle {\sqrt{\frac{4}{3}}\, -\, \sqrt{\frac{3}{4}}\, =\, ?}$

  1. $\displaystyle \frac{1}{2\sqrt{3}}$

  2. $\displaystyle - \frac{1}{2\sqrt{3}}$

  3. 1

  4. $\displaystyle \frac{5\sqrt{3}}{6}$


Correct Option: A
Explanation:

$\displaystyle {\frac{\sqrt{4}}{\sqrt{3}} - \frac{\sqrt{3}}{\sqrt{4}} = \frac{2}{\sqrt{3}} - \frac{\sqrt{3}}{2} = \frac{4 - 3}{2\sqrt{3}} = \frac{1}{2\sqrt{3}}}$

If $\sqrt{75.24\, +\, x}\, =\, 8.71,$ then the value of x is

  1. 0.6241

  2. 6.241

  3. 62.41

  4. None of these


Correct Option: A
Explanation:
$\sqrt{75.24\, +\, x}\, =\, 8.71$        ...Given
Squaring on both sides, we get
$75.24 + x = 8.71 \times 8.71$
$\Rightarrow x=8.71^2-75.24$
$ \Rightarrow x = 0.6241$

If $\sqrt{3}\, =\, 1.732,$ then the approximate value of $\displaystyle \frac{1}{\sqrt{3}}$ is

  1. 0.617

  2. 0.313

  3. 0.577

  4. 0.173


Correct Option: C
Explanation:

$ {\cfrac{1}{\sqrt{3}} = \cfrac{1}{\sqrt{3}} \times \cfrac{\sqrt{1}}{\sqrt{3}} = \cfrac{\sqrt{1}}{3} = \cfrac{1.732}{3} = 0.577}$

$\sqrt{2\sqrt{2\sqrt{2\sqrt{2\sqrt{2}}}}}\, =\, ?$

  1. 0

  2. 1

  3. 2

  4. $2^{31/32}$


Correct Option: D
Explanation:

$\sqrt{2\, \times\, \sqrt{2\, \times\, \sqrt{2\, \times\, \sqrt{2\, \times\, 2^{1/2}}}}}$

$=\, \sqrt{2\, \times\, \sqrt{2\, \times\, \sqrt{(2\, \times\, 2^{3/4})}}}$

$=\, \sqrt{2\, \times\, \sqrt{2\, \times\, 2^{7/8}}}\, =\, \sqrt{2\, \times\, 2^{15/16}}\, =\, 2^{31/32}$

By using the table for square root find the value of $\sqrt{7}$.

  1. $2.652$

  2. $2.746$

  3. $2.646$

  4. $2.616$


Correct Option: C
Explanation:

The sqaure root of $\sqrt 7$ is $2.646$

By using the table for square root find the value of
$13.21$
$21.97$

  1. 3.63, 4.60

  2. 3.63, 4.69

  3. 3.53, 4.69

  4. 3.63, 4.19


Correct Option: B
Explanation:

(i)

From square root table, Square root of 13.21 is:

 √13.21 = 3.6345

Therefore,

The square root of 13.21 is 3.63

(ii) From square root table, Square root of 21.97 is:

 √21.97 = 4.687

Therefore,

The square root of 21.97 is 4.69

Find the square root of $10$, correct to four places of decimal.

  1. 3.4623

  2. 3.1023

  3. 3.1693

  4. 3.1623


Correct Option: D
Explanation:
$3.16227$
$3$$+3$ $10$$9$
$61$$+1$ $100$$61$
$626$$+6$ $3900$$3756$
$6322$$+2$ $14400$$12644$
$63242$$+2$-------------$632447$ $175600$$126484$---------------$4911600$$4427129$

$\sqrt{10}=3.16227\simeq 3.1623$
$\therefore$ The square root of $10$ correct to four places of decimal is $3.1623$

The square root of $\displaystyle \frac{\left ( 3\frac{1}{4} \right )^{4}-\left ( 4\frac{1}{3} \right )^{4}}{\left ( 3\frac{1}{4} \right )^{2}-\left ( 4\frac{1}{3} \right )^{2}}$ is

  1. $\displaystyle 7\frac{5}{12}$

  2. $\displaystyle 7\frac{7}{12}$

  3. $\displaystyle 5\frac{5}{12}$

  4. $\displaystyle 5\frac{7}{12}$


Correct Option: C
Explanation:

$\frac{\left ( 3\tfrac{1}{4} \right )^{4}-\left ( 4\tfrac{1}{3} \right )^{4}}{\left ( 3\tfrac{1}{4} \right )^{2}-\left ( 4\tfrac{1}{3} \right )^{2}}$

=$\frac{\left [ \left ( 3\tfrac{1}{4} \right )^{2}+\left ( 4\tfrac{1}{3} \right )^{2} \right ]\left [ \left ( 3\tfrac{1}{4} \right )^{2}-\left ( 4\tfrac{1}{3} \right )^{2} \right ]}{\left ( 3\tfrac{1}{4} \right )^{2}-\left ( 4\tfrac{1}{3} \right )^{2}}$
=$\left ( 3\tfrac{1}{4} \right )^{2}+\left ( 4\tfrac{1}{3} \right )^{2}$
=$\left ( \frac{13}{16} \right )^{2}+\left ( \frac{13}{9} \right )^{2}=169\times \left ( \frac{9+16}{144} \right )=169\times\frac{25}{144}$ 
Then squire root =$\frac{13\times 5}{12}=\frac{65}{12}$=$5\frac{5}{12}$

Estimate: $\sqrt { 60 } $

  1. $7.7$

  2. $7$

  3. $7.2$

  4. $7.5$


Correct Option: A
Explanation:

$60$ is in between two perfect squares: $49$, which is ${7}^{2}$ and $64$ which is ${8}^{2}$. The difference between $64$ and $49$ is $15$ so $60$ is little more than $\cfrac{2}{3}$ of the way toward $64$ from $49$. A reasonable estimate for $\sqrt {60}$, then would be about $7.7$ which is a little more than $\cfrac{2}{3}$ toward $8$ from $7$.

If $\sqrt{0.01+\sqrt{0.0064}}=x$, then the value of $x$ is ____________.

  1. $0.3$

  2. $0.03$

  3. $\sqrt{0.18}$

  4. None of these


Correct Option: A
Explanation:

Given, $\sqrt{0.01+\sqrt{0.0064}}=x$

Taking square of both sides.
$0.01+\sqrt{0.0064}=x^2$
We know that $\sqrt{0.0064}=0.08$
So, $x^2=0.08+0.01$
$x^2=0.09$
$x=0.3$

The square root of $\displaystyle\frac{36}{5}$ correct to two decimal places is _____________.

  1. $2.68$

  2. $2.69$

  3. $2.67$

  4. $2.66$


Correct Option: A
Explanation:

We know $\sqrt{\dfrac{36}{5}}=\dfrac {6}{\sqrt 5}$

$=\dfrac{6}{2.236}$
$=2.6833$
Upto two decimal places:
$=2.68$

Which of the following is not a perfect square?

  1. $16384$

  2. $23857$

  3. $18496$

  4. $11025$


Correct Option: B
Explanation:

$16384= 128\times 128$         (perfect square)

$18496=136\times 136$           (perfect square)
$11025=105\times 105$         (perfect square)
$23857 = 1\times  23857$        (prime no. so not a perfect square)
Hence, option B is correct.

The number that must be subtracted from $16161$ to get a perfect square is ________.

  1. $31$

  2. $32$

  3. $33$

  4. $34$


Correct Option: B
Explanation:

Let the number is $x$

Finding the square root of $16161$
$\sqrt{16161}=127.1259$

Finding the square of $127$
$127^2=16129$
$x=16161-16129$
$x=32$

Determine
(a) $\sqrt{147} \times \sqrt{243} \$

  1. $189$

  2. $209$

  3. $197$

  4. $138$


Correct Option: A
Explanation:

$√143 = √3  × √49 = √3  × 7$
$√243 = √3  × √81 = √3  × 9$
$√143  ×√243  = 3  × 9  × 7 = 189$

If $x=\sqrt {12}-\sqrt {9},y=\sqrt {13}-\sqrt {10}$ and $z=\sqrt {11}-\sqrt {8}$, then which of the following is true?

  1. $z > x > y$

  2. $z > y > x$

  3. $y > x > z$

  4. $y > z> x$


Correct Option: A
Explanation:

$x=\sqrt{12}-\sqrt{9}$

$x=2\sqrt{3}-3$
$x=2(1.73)-3$
$x=3.46-3$
$\therefore$   $x=0.46$                    ----- ( 1 )
Now,
$y=\sqrt{13}-\sqrt{10}$
$y=3.60-3.16$
$\therefore$  $y=0.44$                ---- ( 2 )
Now,
$z=\sqrt{11}-\sqrt{8}$
$z=3.32-2.83$
$\therefore$  $z=0.49$             ---- ( 3 )
From ( 1 ), ( 2 ) and ( 3 )
$\Rightarrow$  $0.49>0.46>0.44$
$\therefore$  $z>x>y$

Find the atleast number which must  be added to each of the following numbers to get a perfect square. Also find the square root of the perfect square numbers.


$a)525$

  1. 4

  2. 3

  3. 1

  4. 6

  5. 12


Correct Option: A
Explanation:
$i)\ 23^2=529$
$\therefore \ $ it will add $4$ to $525$ we get $529$
which is payout square
$\therefore \ 525+4=529=23^2$

$\therefore 4$ should be added


The value of $\sqrt { \sqrt [ a ]{ { 4 }^{ { a }^{ { a }^{ 2 } } }\sqrt { { 6 }^{ { a }^{ 3 } }\sqrt [ { a }^{ 3 } ]{ { 12 }^{ { a }^{ 6 } }\sqrt [ { a }^{ 4 } ]{ { 18 }^{ { a }^{ 10 } } }  }  }  }  } $ is equal to

  1. $\sqrt {216}$

  2. $\sqrt {72}$

  3. $72$

  4. $216$


Correct Option: C
Explanation:

$\begin{array}{l} =\sqrt { \sqrt [ a ]{ { { 4^{ { a^{ { a^{ 2 } } } } } }\sqrt { { 6^{ { a^{ 3 } } } }\sqrt [ { { a^{ 3 } } } ]{ { { { 12 }^{ { a^{ 6 } } } }\sqrt [ { { a^{ 4 } } } ]{ { { { 18 }^{ { a^{ 10 } } } } } }  } }  }  } }  }  \ =\sqrt { 4\times 6\times 18\times 12 }  \ =72 \ Hence, \ option\, \, C\, \, is\, correct\, \, answer. \end{array}$

The approximate value of $\sqrt{(1.97)^2+(4.02)^2+(3.98)^2}$.

  1. $5.99$

  2. $5.099$

  3. $5.009$

  4. $5.734$


Correct Option: A
Explanation:

According to Question

$\sqrt{(2-0.03)^2+(4+0.02)^2+(4-0.02)^2}$
Opening Brackets
$\sqrt{(4+0.0009-0.12)+(16+0.0004+0.16)+(16+0.0004-0.16)}$
$\sqrt{36-0.1183}$
$\sqrt{35.8817} \approx 5.99$

The square root of 496 correct to three places of decimal is 22.271
State true or false.

  1. True

  2. False


Correct Option: A
Explanation:

$\quad \ \quad \quad \quad \quad \quad 22.271\ \quad \quad \quad \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ \quad \quad 2)496.00\quad 00\quad 00\ \quad \quad \quad -4\quad \downarrow \ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ 42)\quad 00\quad 96\ \quad \quad -0084\quad \quad \downarrow \ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ 442)\quad 12\quad 00\ \quad \quad -\quad \quad 0884\quad \quad \downarrow \ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \quad \ 4447)\quad \quad \quad \quad \quad \quad 316\quad 00\quad \ \quad \quad \quad \quad \quad \quad \quad \quad \quad -31129\quad \quad \downarrow \ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ 44541)\qquad \qquad \qquad \quad \quad \quad \quad 471\quad 00\ \qquad \qquad \qquad \qquad \qquad -\quad \quad 44541\ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad 2559\ Rounding\quad off\quad :\quad 22.271\ \ $

Find the square root of $\displaystyle 3 \frac{4}{5}$  to two decimal places 

  1. $1.95$

  2. $1.96$

  3. $1.84$

  4. $1.94$


Correct Option: A
Explanation:

  $\displaystyle 3 \dfrac{4}{5}$
$=\dfrac{19}{5}$
$=3.8$

$1$$1$ $3.8$$1$
$29$$9$ $280$$261$
$384$$4$ $1900$$1536$
$3889$ $36400$$35001$                     

Therefore,
Square root of $\displaystyle 3 \frac{4}{5}=1.949$
                              $=1.95$

State true or false:

The square root of 0.008 correct to three decimal places is 0.089.

  1. True

  2. False


Correct Option: A
Explanation:

$\quad \ \quad \quad \quad \quad \quad 0.089\ \quad \quad \quad \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ \quad \quad 0)\quad 0.00\quad 80\quad 00\ \quad \quad \quad -0.00\quad \downarrow \ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ 8)\quad \quad 00\quad 80\ \quad \quad -\quad 0064\quad \quad \downarrow \ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ 169)\quad \quad \quad 16\quad 00\ \quad \quad -\quad \quad \quad \quad 1529\ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \quad \ \quad \quad \quad \quad \quad \quad \quad \quad 71\quad \quad \quad \ Rounding\quad off\quad :\quad 0.089\ \ $

State true or false:

The square root of 5.2005 correct to two decimal places is 2.28.

  1. True

  2. False


Correct Option: A
Explanation:

$\quad \ \quad \quad \quad \quad \quad 2.287\ \quad \quad \quad \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ \quad \quad 2)5.\quad 20\quad 05\ \quad \quad \quad -4\quad \downarrow \ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ 42)01\quad 20\ \quad \quad -0084\quad \quad \downarrow \ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ 448)\quad 036\quad 05\ \quad \quad -\quad \quad 3584\quad \quad \downarrow \ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ \quad \quad \quad \quad \quad \quad \quad 21\quad $

The square root of 245 correct to two places of decimal is 15.65
State true or false

  1. True

  2. False


Correct Option: A
Explanation:

$\quad \ \quad \quad \quad \quad \quad 15.65\ \quad \quad \quad \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ \quad 15)245.00\quad 00\ \quad \quad -225\quad \downarrow \ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ 306)\quad 20\quad 00\ \quad \quad -1836\quad \quad \downarrow \ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ 3125)164\quad 00\ \quad \quad -\quad \quad 15625\ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \quad \ \quad \quad \quad \quad \quad \quad 845\quad \quad \ Rounding\quad off\quad :\quad 15.65\ \ $

The square root of 0.065 correct to three places of decimal is 0.255
State true or false

  1. True

  2. False


Correct Option: A
Explanation:

$\quad \ \quad \quad \quad \quad \quad 0.254\ \quad \quad \quad \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ \quad \quad 2)\quad 0.06\quad 50\quad 00\ \quad \quad \quad -0.04\quad \downarrow \ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ \quad 45)\quad \quad \quad 2\quad 50\ \quad \quad -\quad \quad 225\quad \quad \downarrow \ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ \quad 504)\quad \quad \quad 25\quad 00\ \quad \quad -\quad \quad \quad \quad 2016\ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \quad \ \quad \quad \quad \quad \quad \quad \quad \quad 484\quad \quad \quad \ \ $

The square root of 82.6 correct to two places of decimal is 9.09
State true or false.

  1. True

  2. False


Correct Option: A
Explanation:

$\quad \ \quad \quad \quad \quad \quad 9.087\ \quad \quad \quad \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ \quad \quad 9)82.60\quad 00\ \quad \quad \quad -81\quad \downarrow \ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ 180)\quad 01\quad 60\ \quad \quad -0000\quad \quad \downarrow \ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ 1808)\quad 160\quad 00\ \quad \quad -\quad \quad 12864\quad \quad \downarrow \ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \quad \ 19167)\quad \quad \quad \quad \quad 3136\quad 00\quad \ \quad \quad \quad \quad \quad \quad \quad \quad \quad -31129\quad \quad \downarrow \ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ \qquad \qquad \qquad \qquad 282471\quad $

State true or false.
The square root of 0.602 correct to two decimal places is 0.78.

  1. True

  2. False


Correct Option: A
Explanation:

$\quad \ \quad \quad \quad \quad \quad 0.77\ \quad \quad \quad \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ \quad \quad 7)\quad 0.60\quad 20\ \quad \quad \quad -0.49\quad \downarrow \ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ 147)\quad \quad 11\quad 20\ \quad \quad -\quad 1029\quad \quad \downarrow \ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ \quad \quad \quad \quad \quad 191\quad $

Find the square root of $\displaystyle 1 \frac{5}{16}$  correct to two decimal places

  1. $1.14$

  2. $1.15$

  3. $1.65$

  4. $1.12$


Correct Option: B
Explanation:

 $\displaystyle 1 \dfrac{15}{16}$

$=\dfrac{21}{16}$
$=1.3125$

$1$$1$ $1.3125$$1$
$21$  $1$ $31$$21$
$224$   $4$ $1025$$896$
$2285$ $12900$$11425$                  $1475$

Therefore,
Square root of $\displaystyle 1 \frac{15}{16}=1.145$
                                   $=1.15$

Find the square root of $\displaystyle 6 \frac{7}{8}$ correct to two decimal places 

  1. $2.62$

  2. $2.61$

  3. $2.63$

  4. $2.6$


Correct Option: A
Explanation:

 $\displaystyle 6 \frac{7}{8}$
$=\dfrac{55}{8}$
$=6.875$

$2$$2$ $6.875$$4$
$46$  $6$ $287$$276$
$522$    $1150$$1044$
$6$                  

Therefore,
Square root of $\displaystyle 6 \frac{7}{8}=2.62$
                             

Consider the Following values of the three given number $\displaystyle \sqrt{103},$ $\displaystyle \sqrt{99.35},$ $\displaystyle \sqrt{102.20},$
1.10.1489 (approx,)
2.10.109(approx,)
3.9.967 (approx,)
The correct sequence of the these values matching with the above number is:

  1. 1, 2, 3

  2. 1, 3, 2

  3. 2, 3, 1

  4. 3, 1, 2


Correct Option: B
Explanation:

$\sqrt{3}=10.14889$
$\sqrt{99.35}=9.967$
$\sqrt{102.30}=10.1094$
Hence,The correct sequence of the these values matching with the above number is:1,3,2

$\sqrt{1\, +\, \sqrt{1\, +\, \sqrt{1\, +\, ..........}}}\, =\, ..........$   

  1. Equals 1

  2. Lies between 0 and 1

  3. Lies between 1 and 2

  4. Is greater than 2


Correct Option: C
Explanation:

Let 


$x=\sqrt{1+\sqrt{1-----}}$

Squaring both sides

$x^2=1+\sqrt{1+\sqrt{1+\sqrt{1------}}}$

$x^2=1+x$                $(\because x=\sqrt{1+\sqrt{1------}})$

$x^2-x-1=0$

finding roots, we get

$\dfrac{1\pm\sqrt{1+4}}{2}$

$=\dfrac{1\pm\sqrt{5}}{2}$

$=-0.615$ and $1.615$

If $x\, \ast\, y\, =\, \sqrt{x^2\, +\, y^2}$, then the value of $(1^{\ast}\, 2\, \sqrt{2})(1^{\ast}\, - 2\, \sqrt{2})$ is:  

    • 7
  1. 0

  2. 2

  3. 9


Correct Option: D
Explanation:

$1^{\ast} 2 \sqrt{2}\, =\, \sqrt{(1)^2\, +\, (2 \sqrt{2}^2}\, =\, \sqrt{1\, +\, 8}\, =\, 3$

$1^{\ast} -2 \sqrt{2}\, =\, \sqrt{(1)^2\, +\, (-2 \sqrt)^2}\, =\, \sqrt{1\, +\, 8}\, =\, 3$

$(1\, \ast\, 2 \sqrt{2})(1\, \ast\, -2 \sqrt{2})\, =\, (3)(3)\, =\, 9$

$\displaystyle \frac{\sqrt{32}\, +\, \sqrt{48}}{\sqrt{8}\, +\, \sqrt{12}}\, =\, ?$

  1. $\sqrt{2}$

  2. 2

  3. 4

  4. 8


Correct Option: B
Explanation:
$ {\cfrac{\sqrt{32} + \sqrt{48}}{\sqrt{8} + \sqrt{12}} = \cfrac{\sqrt{16 \times 2} + \sqrt{16 \times 3}}{\sqrt{4 \times 2} + \sqrt{4 \times 3}}}$

$= \cfrac{4\sqrt{2} + 4\sqrt{3}}{2\sqrt{2} + 2\sqrt{3}}$

$ = \cfrac{4 \left (\sqrt{2} + \sqrt{3} \right )}{2 \left (\sqrt{2} + \sqrt{3} \right )}$

$ = 2$

If $\sqrt{2}\, =\, 1.4142,$ then the value of $\displaystyle \frac{2}{9}$ is

  1. 0.2321

  2. 0.4714

  3. 0.3174

  4. 0.4174


Correct Option: B
Explanation:

$\displaystyle {\sqrt {\frac{2}{9}}\, =\, \frac{\sqrt{2}}{\sqrt{9}}\, =\, \frac{\sqrt{2}}{3}\, =\, \frac{1.4142}{3}\, =\, 0.4714.}$

If $\sqrt{24}\, =\, 4.899,$ then the value of $\displaystyle \frac{8}{3}$ is

  1. 0.544

  2. 2.666

  3. 1.633

  4. 1.333


Correct Option: C
Explanation:

$\displaystyle {\sqrt{\frac{8}{3}} = \frac{\sqrt{8}}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} = \frac{\sqrt{24}}{3} = \frac{4.899}{3} = 1.633.}$ 

$\sqrt{1\, +\, \sqrt{1\, +\, \sqrt{1\, +\, .....}}}$ = ........

  1. Equals $1$

  2. Lies between $0$ and $1$

  3. Lies between $1$ and $2$

  4. Is greater than $2$


Correct Option: C
Explanation:

Let $x=\sqrt { 1+\sqrt { 1+\sqrt { 1+....... }  }  }$

$\therefore { x }^{ 2 }=1+\sqrt { 1+\sqrt { 1+\sqrt { 1+....... }  }  }$
$\Longrightarrow { x }^{ 2 }=1+x$
$\Longrightarrow { x }^{ 2 }-x-1=0$
$\Longrightarrow x=\cfrac { 1\pm \sqrt { 1+4 }  }{ 2 }$
$ \Longrightarrow x=\cfrac { 1\pm \sqrt { 5 }  }{ 2 }$
$ \Longrightarrow \cfrac { 1\pm 2.236 }{ 2 } =\left( -0.618, 1.618 \right) $
We reject the negative value because, from the given expression,

$x$ is positive.
So, $x=1.618$ approximately.
$\therefore 1<x<2$

$\sqrt{(12\, +\, \sqrt{12\, +\, \sqrt{12\, +\, ........}})}\, =\, ?$

  1. 3

  2. 4

  3. 6

  4. Greater than 6


Correct Option: B
Explanation:
Let $\sqrt{(12 + \sqrt{12 + \sqrt{12 + ........}})} = x$
Then, $\sqrt{12 + x} = x$
$ \Rightarrow 12 + x = x^2$
$\Rightarrow x^2 - x - 12 = 0$ 
$\Rightarrow (x - 4) (x + 3) = 0$
$\Rightarrow x = 4$       ...(neglecting $x = -3$)

Find the square root of each of the following correct to three places of decimal.
$17$
$1.7$
$2.5$
$\displaystyle\frac{7}{8}$

  1. $4.153\;;\;1.304\;;\;1.581\;;\;0.935$

  2. $4.123\;;\;1.304\;;\;1.581\;;\;0.995$

  3. $4.123\;;\;1.304\;;\;1.581\;;\;0.935$

  4. $4.123\;;\;1.304\;;\;1.501\;;\;0.935$


Correct Option: C
Explanation:

$17$

$4.123$
$4$$+4$ $17$$16$
$822$$+2$ $100$$81$
$8243$ $1900$$1644$
$25600$$24729$                 $871$

$\therefore$ The square root of $17=4.123$

$1.7$

$0$ $1.303$
$1$$+1$ $1.7$$1$
$23$$+3$ $70$$69$
$2603$ $10000$$7809$
$1191$

$\therefore$ The square root of $1.7=1.303$

$2.5$

$0$ $1.581$
$1$$+1$ $2.5$$1$
$25$$+5$ $150$$125$
$308$$+8$ $2500$$2464$
$3161$ $3600$$3161$                 $439$

$\therefore$ The square root of $2.5=1.581$

$\frac{7}{8}$

$8$ $70$$64$ $0.875$
$60$$56$
$40$$40$             $0$
$0.935$
$0$ $0.875$$0$
$9$$9$ $87$$81$
$183$$+3$ $650$$549$
$1865$ $10100$$9325$
$925$

$\therefore$ The square root of $\frac{7}{8}=0.935$

The simplest form of $\sqrt{864}$ is

  1. $12\sqrt{5}$

  2. $12\sqrt{3}$

  3. $12\sqrt{6}$

  4. $6\sqrt{2}$


Correct Option: C
Explanation:

$\sqrt{864}=\sqrt{2^2\times2^2\times3^2\times2\times3}=2\times2\times3\sqrt{6}=12\sqrt{6}$

Find the least number which must be subtracted from each of the following numbers so as to get a perfect square Also find the square root of the perfect square so obtained 
$(i) 402, (ii) 1989, (iii) 3250, (iv) 825, (v) 4000$

  1. Least number which must be subtracted:$(i) 2, (ii) 22, (iii) 1, (iv) 21, (v) 52$

    Square root of the perfect square:
    $(i) 20, (ii) 34 ,(iii) 55, (iv) 26, (v) 67$

  2. Least number which must be subtracted:$(i) 2, (ii) 53, (iii) 1, (iv) 41, (v) 31$

    Square root of the perfect square:
    $(i) 20, (ii) 44, (iii) 57, (iv) 28, (v) 63$

  3. Least number which must be subtracted:$(i) 6, (ii) 22, (iii) 50, (iv) 31, (v) 40$

    Square root of the perfect square:
    $(i) 19, (ii) 41, (iii) 49 ,(iv) 27 ,(v) 65$

  4. Least number which must be subtracted:$(i) 8, (ii) 41, (iii) 12, (iv) 56, (v) 4$

    Square root of the perfect square:
    $(i) 19 ,(ii) 22, (iii) 37, (iv) 26, (v) 61$


Correct Option: B
Explanation:

For $402$

Nearest perfect square is $400$
$\sqrt{400}$ $=$ $20$
$402$ $-$ $400$ $=$ $2$
For $1989$
Nearest perfect square is $1936$

$\sqrt{1936}$ $=$ $44$
$1936$ $-$ $1989$ $=$ $53$

For $3250$
Nearest perfect square is $3249$

$\sqrt{3249}$ $=$ $57$
$3250$ $-$ $3249$ $=$ $1$
For $825$
Nearest perfect square is $784$
$\sqrt{784}$ $=$ $28$
$825$ $-$ $784$ $=$ $41$
For $4000$
Nearest perfect square is $3969$
$\sqrt{3969}$ $=$ $63$
$4000$ $-$ $3969$ $=$ $31$
From this, Option B is correct answer.

Mr. Hansraj wants to find the least number of boxes to be added to get a perfect square. He already has $7924$ boxes with him. How many more boxes are required?

  1. $819$

  2. $412$

  3. $419$

  4. $176$


Correct Option: D
Explanation:

Find square root by long division method.

$\therefore \sqrt {7924}$ = $89.01$

Hence, the perfect square number smaller than $7924$ is
$89^2 = 7921$
The next perfect square no. is $90^2 = 8100$

So, $8100 - 7924 = 176$
Therefore, the man needs $176$ more boxes in order to get a perfect square number.
So, option D is correct.

$\displaystyle \sqrt { 4.8\times { 10 }^{ 9 } } $ is closest in value to

  1. $2200$

  2. $70000$

  3. $220000$

  4. $7000000$

  5. $22000000$


Correct Option: B
Explanation:

$\displaystyle \sqrt { 4.8\times { 10 }^{ 9 } } $

$=\sqrt{48\times10^{8}}$$\simeq$$7\times10^{4}=70000$
$7^{2}$$=$$49$
Hence Option B is correct.

What is an approximate value of $\sqrt{9805}$?

  1. 98.56

  2. 97.23

  3. 99.05

  4. 100.34


Correct Option: C
Explanation:

$99^2$ = 9801
$100^2$ = 10000
In between this two squares, 9805 is placed.
So the average of $\frac{99 + 100}{2}= 99.5$
Then, $99.5^2 = 9900.25$
So, $\sqrt{9805} \approx 99.05$

Estimate the square root of 500.

  1. 22.5

  2. 20.3

  3. 21.4

  4. 23.6


Correct Option: A
Explanation:

$22^2$ = 484
$23^2$ = 576
In between this two square numbers, 500 is placed.
So average of $\frac{22 + 23}{2}= 22.5$
Then, $22.5^2 = 506.25$
So, $\sqrt{500} \approx 22.5$

Find the approximate value of $\sqrt{5245}$.

  1. 70.5

  2. 72.3

  3. 71.8

  4. 79.2


Correct Option: B
Explanation:

$72^2$ = 5184
$73^2$ = 5329
In between this two squares, 5245 is placed.
So average of $\frac{72 + 73}{2}= 72.5$
Then, $72.5^2 = 5256.25$
So, $\sqrt{5245} \approx 72.3$

Find the approximate value of $\sqrt{1235}$.

  1. $35.15$

  2. $32.19$

  3. $30.25$

  4. $29.13$


Correct Option: A
Explanation:

$35^2$ = 1225
$36^2$ = 1296
In between this two squares, 1235 is placed.
So the average of $\dfrac{35 + 36}{2}= 35.5$
Then, $35.5^2 = 1260.25$

So $\sqrt{1235}\approx35.15$

Estimate the value of $\sqrt{750}$.

  1. 24.3

  2. 25.1

  3. 23.2

  4. 27.3


Correct Option: D
Explanation:

$27^2$ = 729
$28^2$ = 784
In between this two squares, 750 is placed.
So average of $\frac{27 + 28}{2}= 27.5$
Then, $27.5^2 = 756.25$
So, $\sqrt{750} \approx 27.3$

Estimate the square root of $300$

  1. $12.44$

  2. $16.66$

  3. $17.32$

  4. $18.54$


Correct Option: C
Explanation:

The square root of $300$ is $10\sqrt 3$

We know that $\sqrt 3=1.732$
Thus $\sqrt{300}=10\times 1.732=17.32$

Estiamate the square root of $850$ 

  1. $29.15$

  2. $30.21$

  3. $98.23$

  4. $23.11$


Correct Option: A
Explanation:

The square root of $850$ is $\sqrt {850}=\sqrt {25 \times 34}=5\sqrt {34}$

Square root of $34$ lie between $5$ and $6$.
 square of $5.5$ is $30.25$ 
Now, we can say that square root of $34$ lie between $5.5$ and $6$.
Now, square of $5.75$ is $33.06$
So, square root of $34$ lie between $5.75$ and $6$.
Now, we have to choose the number $5.85$
$(5.85)^2=34.225$ which is greater than $34$ and close to $34$
So, assume a number $5.84$.
$(5.84)^2=34.1056$
$(5.83)^2=33.9889$
Hence, we can say that square root of 34 lie between $5.83$ and $5.84$.
So, $5\times 5.83=29.15$.

The real number $(\sqrt [3]{\sqrt {75} - \sqrt {12}})^{-2}$ when expressed in the simplest form is equal to

  1. $\dfrac {1}{2}$

  2. $\dfrac {1}{3}$

  3. $\dfrac {1}{4}$

  4. $\dfrac {1}{5}$


Correct Option: B
Explanation:

Real number $(\sqrt[3]{\sqrt{75}-\sqrt{12}})^{-2}$

$\sqrt{75}=5\sqrt{3}$ and $\sqrt{12}=2\sqrt{3}$
$=(\sqrt[3]{5\sqrt{3}-2\sqrt{3}})^{-2}$
$=(\sqrt[3]{3\sqrt{3}})^{-2}$
$(3\sqrt{3})^{\dfrac{-2}{3}} ....... (1)$
$3\sqrt{3}=3^{\dfrac{1}{2}+1}=3^{\dfrac{3}{2}} ....... (ii)$
Substituting $(ii)$ in $(i)$
$\left[(3)^{\dfrac{3}{2}}\right]^{\dfrac{-2}{3}}$
$=\dfrac{1}{3}=(3)^{-1}$

- Hide questions