0

Non singular matrix - class-XII

Description: non singular matrix
Number of Questions: 49
Created by:
Tags: determinants maths inverse of a matrix and linear equations business maths matrices matrices and determinants
Attempted 0/44 Correct 0 Score 0

The number of value of $x$ in the closed interval $[-4,-1]$, the matrix $\begin{bmatrix} 3 & -1+x & 2 \ 3 & -1 & x+2 \ x+3 & -1 & 2 \end{bmatrix}$ is singular is 

  1. $0$

  2. $1$

  3. $2$

  4. $3$


Correct Option: C
Explanation:
For a singular matrix the value of the determinant = 0 
$ [3(-1)(2)+(-1+x)(x+2)(x+3)+(2)(3)(-1)] $
$\times  [-(2)(-1)(x+3)-(-1+x)(3)(2)-(3)(x+2)(x+3)] = 0 $
$-6+x^3+4x^2+x-6-6+2x+6+6-6x-3x^2-15x-18 = 0 $
$ x^3+x^2-18x-24 = 0 $
$ x = -4 $
$x =(3-\sqrt{33})/2=-1.372 $
$x =(3+\sqrt{33})/2= 4.372 $

Value of x in the closed interval $[-4,-1]$ are $-4,   -1.372$

If $\left[ {\begin{array}{*{20}{c}}1&{ - 1}&x\1&x&1\x&{ - 1}&1\end{array}} \right]$ has no inverse, then the real value of $x$ is 

  1. $2$

  2. $3$

  3. $0$

  4. $1$


Correct Option: D
Explanation:

$A=\begin{vmatrix} 1 & -1 & x \\ 1 & x & 1 \\ x & -1 & 1 \end{vmatrix}has\quad no\quad inverse\quad x$

$if\,\left| A \right| = 0$

$\begin{vmatrix} 1 & -1 & x \\ 1 & x & 1 \\ x & -1 & 1 \end{vmatrix}=0$

$1\left( {x + 1} \right) - 1\left( { - 1 + x} \right) + x\left( { - 1 - {x^2}} \right) = 0$

$x + 1 + 1 - x - x - {x^3} = 0$

$ - {x^3} - x + 2 = 0$

${x^3} + x - 2 = 0$

$\left( {x - 1} \right)\left( {{x^2} + x + 2} \right) = 0$

$x = 1\,is\,real\,value\,$

The matrix $\begin{bmatrix} 1 & 0 & 1 \ 2 & 1 & 0 \ 3 & 1 & 1 \end{bmatrix}$ is:

  1. nonsingular

  2. singular

  3. skew symmetric

  4. symmetric


Correct Option: B
Explanation:

$\begin{vmatrix} 1 & 0 & 1 \ 2 & 1 & 0 \end{vmatrix}=1\begin{vmatrix} 1 & 0 \ 1 & 1 \end{vmatrix}-0\begin{vmatrix} 2 & 0 \ 3 & 1 \end{vmatrix}+1\begin{vmatrix} 2 & 1 \ 3 & 1 \end{vmatrix}$

$=1(1-0)-0+1(2-3)$
$=1-1$
$=0$
Therefore, it is a singular matrix.

If $\begin{bmatrix} 1 & 2 & x \  4 & -1 & 7  \  2 & 4 & 6  \end{bmatrix}$ is a singular matrix, then $x=$

  1. $0$

  2. $1$

  3. $-3$

  4. $3$


Correct Option: C
Explanation:

$\begin{vmatrix} 1 & 2 & x \ 4 & -1 & 7 \ 2 & 4 & -6  \end{vmatrix}=0$

$\Rightarrow 1\begin{vmatrix} -1 & 7 \ 4 & -6 \end{vmatrix}-2\begin{vmatrix} 4 & 7 \ 2 & -6 \end{vmatrix}+x\begin{vmatrix} 4 & -1 \ 2 & 4 \end{vmatrix}=0$

$\Rightarrow (6-28)-2(-24-14)+x(16+2)=0$
$\Rightarrow -22+76+18x=0$
$\Rightarrow 18x=-54$

$\Rightarrow x=-3$

$A$ and $B$ are two non-zero square matrices such that $AB = 0$. Then

  1. Both $A$ and $B$ are singular

  2. Either of them is singular

  3. Neither matrix is singular

  4. None of these


Correct Option: B
Explanation:

Given $AB =0$

$\Rightarrow |AB|=0$

$\Rightarrow |A||B|=0$

$\Rightarrow |A|=0 \,or\, |B|=0$

If the matrix $\begin{bmatrix} \alpha  & 2 & 2 \ -3 & 0 & 4 \ 1 & -1 & 1 \end{bmatrix}$ is not invertible, then:

  1. $\alpha =-5$

  2. $\alpha =5$

  3. $\alpha =-0$

  4. $\alpha =-1$


Correct Option: A
Explanation:

For a matrix to be not invertible, determinant of the matrix should be $0$
So, $\left| \begin{matrix} \alpha  & 2 & 2 \ -3 & 0 & 4 \ 1 & -1 & 1 \end{matrix} \right| =0$

$\Rightarrow -(-3)(2-(-2))-4(-\alpha -2)=0\ \Rightarrow 12+4\alpha +8=0\ \Rightarrow 4\alpha =-20\ \Rightarrow \alpha =-5$
Hence, option A is correct

Consider the following statements:
1. The matrix
               $\begin{pmatrix} 1 & 2 & 1 \ a & 2a & 1 \ b & 2b & 1 \end{pmatrix}$ is singular.
2. The matrix
              $\begin{pmatrix} c & 2c & 1 \ a & 2a & 1 \ b & 2b & 1 \end{pmatrix}$ is non-singular.
Which of the above statements is/are correct?

  1. 1 only

  2. 2 only

  3. Both 1 and 2

  4. Neither 1 nor 2


Correct Option: A
Explanation:

For matrix

  $\begin{vmatrix} 1 & 2 & 1 \ a & 2a & 1 \ b & 2b & 1 \end{vmatrix}$


$C _2\rightarrow C _2-2C _1 $

$\begin{vmatrix} 1 & 0 & 1 \\ a & 0 & 1 \\ b & 0 & 1 \end{vmatrix}$ The determinant is $0$. So the matrix is singular.

For matrix,
$ \begin{vmatrix} c & 2c & 1 \\ a & 2a & 1 \\ b & 2b & 1 \end{vmatrix}$

$C _2\rightarrow C _2-2C _1 $

$\begin{vmatrix} c & 0 & 1 \\ a & 0 & 1 \\ b & 0 & 1 \end{vmatrix}$ The determinant is $0$. So the matrix is singular.

Thus, only $1$ is true.
Hence, option A is correct.

Let $A$ be a square matrix all of whose entries are integers. Then which one of the following is true?

  1. If $det(A)=\pm 1$, then ${A}^{-1}$ exists but all its entries are not necessarily integers.

  2. If $det(A)=\pm 1$, then ${A}^{-1}$ exists and all its entries are non integers

  3. If $det(A)=\pm 1$, then ${A}^{-1}$ exists and all its entries are integers

  4. If $det(A)=\pm 1$, then ${A}^{-1}$ need not exist


Correct Option: C

If $A$ and $B$ are two non-zero square matrices of the same order such that the product $AB=0$, then

  1. both $A$ and $B$ must be singular

  2. exactly one of them must be singular

  3. both of them are non singular

  4. none of these


Correct Option: D
Explanation:

$AB=O$
taking determinant on both sides
$|AB|=|A||B|=0$
$\Rightarrow$ Either $A$ or $B$ should be a singular matrix.
Hence, option D.

Let $A=\begin{bmatrix} a & b\ c & d\end{bmatrix}$ be a $2\times 2$ matrix, where a, b, c and d take the values $0$ or $1$ only. The number of such matrices which have inverses is?

  1. $8$

  2. $7$

  3. $6$

  4. $5$


Correct Option: A
Explanation:

${ A }^{ -1 }=\frac { adj\quad A }{ \left| A \right|  } $

so $\left| A \right| \neq 0\ ad-bc\neq 0$
for  $ ad-bc\neq 0$ 
either $ad=1 ,bc=0$ or $ad=0 ,bc=1$
$ad=1 ,bc=0$ can be chosen in 4 ways 
similarly $ad=0 ,bc=1$ can be chosen in 4 ways
so number of matrices  formed$=4+4=8$

If $A$ is a nonsingular matrix satisfying $AB=BA+A$ then

  1. $\left|B\right|=\left|I+B\right|$

  2. $\left|B\right|=\left|2I+B\right|$

  3. $\left|B\right|=\left|B-I\right|$

  4. $\left|B\right|=\left|B-2I\right|$


Correct Option: A

If $A$ and $B$ and square matrix of the same order such that $AB=A$ and $BA=B$, then $A$ and $B$ are both:

  1. Singular

  2. Non-singular

  3. Idempotent

  4. Involutory


Correct Option: A

The number of $3\times 3$ non-singular matrices, with four entries as $1$ and all other entries as $0$ is 

  1. Less than $4$

  2. $5$

  3. $6$

  4. At least $7$


Correct Option: D

If A and B are two non-singular square matrices and AB=I, then which of the following is true ?

  1. $BA = I$

  2. ${ A }^{ -1 }=B$

  3. ${ B }^{ -1 }=A$

  4. ${ A }^{ 2 }=B$


Correct Option: A

If $A$ and $B$ are non-singular matrices, then _____

  1. $(AB)^{-1} = A^{-1}B^{-1}$

  2. $AB = BA$

  3. $(AB)^T = A^T. B^T$

  4. $(AB)^{-1} = B^{-1} A^{-1}$


Correct Option: A

The matrix $\left[ \begin{matrix} \lambda  & 7 & -2 \ 4 & 1 & 3 \ 2 & -1 & 2 \end{matrix} \right]$ is a singular matrix if $\lambda$ is

  1. $\dfrac{2}{5}$

  2. $\dfrac{5}{2}$

  3. $-5$

  4. $none\ of\ these$


Correct Option: A

If 3, -2 are the Exigent values of non-singular matrix A and |A|=4. Then Exigent values of Adj(A) are

  1. 3/4, -1/2

  2. 4/3, -2

  3. 12, -8

  4. -12, 8


Correct Option: B
Explanation:

$\begin{array}{l} { \lambda _{ 1 } }=3,\, \, { \lambda _{ 2 } }=-2 \ \left| A \right| =4 \ adj\left( A \right) =\left( A \right) \cdot { A^{ -1 } } \ Ax=\lambda x \ \frac { 1 }{ \lambda  } x={ A^{ -1 } }x \ \left( { \lambda I\cdot { A^{ -1 } } } \right) =\frac { { \left( A \right) \cdot \left( { \lambda I-{ A^{ -1 } } } \right)  } }{ { \left( A \right)  } }  \ exigent\, value\, of\, adj\left( A \right) \, is\, \frac { { \left( A \right)  } }{ { exigent\, value\, of\, A } }  \ =\frac { 4 }{ 3 } ,\frac { 4 }{ { -8 } }  \ =\left( { \frac { 4 }{ 3 } ,-2 } \right)  \ Hence,\, option\, B\, is\, correct\, answer. \end{array}$

The values of K for which matrix $A = \begin{bmatrix} 1& 0 & - K\ 2 & 1 & 3\ K & 0 & 1\end{bmatrix}$ is invertible are

  1. $\displaystyle {-1,1 }$

  2. $\displaystyle R$

  3. $\displaystyle R\backslash {-1,1}$

  4. $\displaystyle no\space real\space values$


Correct Option: B
Explanation:

Matrix A is invertible if $|A| \neq 0$, i.e.,
$\begin{bmatrix}1 & 0 & -K\ 2 & 1 & 3\ K & 0 & 1\end{bmatrix} \neq 0$
or $1(1) - K (-K) \neq 0$
Expanding along second column
$|A| =-0+1(1-(-K)(K))=1+K^2 \neq 0$ which is true for all real K.
Hence, A is invertible for all real values of K.

With $1,\omega, \omega^2$ as cube roots of unity, inverse of which of the following matrices exists

  1. $\begin{bmatrix}1 & \omega \ \omega & \omega^2\end{bmatrix}$

  2. $\begin{bmatrix}\omega^2 & 1 \ 1 & \omega\end{bmatrix}$

  3. $\begin{bmatrix} \omega & \omega^2 \ \omega^2 & 1\end{bmatrix}$

  4. None of these


Correct Option: D
Explanation:

The inverse of a matrix exists if its determinant is not equal $0$.
For option A, 
Let $A=\begin{bmatrix}1 & {\omega} \ {\omega} & {\omega}^2\end{bmatrix}$
Here, $|A|=0$
Hence, inverse does not exists.

For option B, 
Let $A=\begin{bmatrix}{\omega}^{2} & 1 \ 1 & {\omega}\end{bmatrix}$
Here, $|A|=0$
Hence, inverse does not exists.

For option C, 
Let $A=\begin{bmatrix}{\omega} & {\omega}^{2} \ {\omega}^{2} & 1\end{bmatrix}$
Here, $|A|=0$
Hence, inverse does not exists.

Hence, the inverse does not exist for any of the given matrices

$\displaystyle \begin{bmatrix} 1 & -2 & 3 \ 2 & -1 & 4 \ 3 & 4 & 1 \end{bmatrix}$ is a

  1. rectangular matrix

  2. singular matrix

  3. square matrix

  4. nonsingular matrix


Correct Option: C,D
Explanation:

It is a $3 \times 3$ so it is a square matrix,


$\displaystyle \begin{bmatrix} 1 & -2 & 3 \ 2 & -1 & 4 \ 3 & 4 & 1 \end{bmatrix}$


$=1(-17)+2(-10)+3(11)$

$=-17-20+33$

$=33-37=-4$

so, it is not singular

The number of $3\times 3$ non-singular matrices with four entries as $1$ and all other entries as $0$ is

  1. $Less\ than\ 4$

  2. $5$

  3. $6$

  4. $At\ least\ 7$


Correct Option: A

If the matrix $A = \begin{bmatrix}8 & -6 & 2 \ -6 & 7 & -4 \ 2 & -4 & \lambda\end{bmatrix}$ is singular, then $\lambda = $

  1. $3$

  2. $4$

  3. $2$

  4. $5$


Correct Option: A
Explanation:

Given, the matrix $A$ is singular.

$\Rightarrow |A|=0$

$\begin{vmatrix} 8 & -6 & 2 \ -6 & 7 & -4 \ 2 & -4 & \lambda  \end{vmatrix}=0$

$8(7\lambda -16)+6(-6\lambda +8)+2(10)=0$

$\Rightarrow 20\lambda -60=0$

$\Rightarrow \lambda=3$

The inverse of a skew-symmetric matrix of odd order is

  1. a symmetric matrix

  2. a skew-symmetric matrix

  3. diagoinal matrix

  4. does not exists


Correct Option: D
Explanation:

Let A be a skew-symmetric matrix of order n.

By definition ${ A }^{ ' }=-A$
$\Rightarrow \left| { A }^{ ' } \right| =\left| -A \right| \Rightarrow \left| A \right| ={ \left( -1 \right)  }^{ n }\left| A \right| $
$\Rightarrow \left| { A } \right| =\left| -A \right| $ as n is odd
$\Rightarrow 2\left| { A } \right| =0\Rightarrow \left| { A } \right| =0$
Thus ${ A }^{ -1 }$ does not exist

Suppose $  A  $ is any $  3 \times 3  $ non-singular matrix and $  (A-3 I)(A-5 I)=0,  $ where $  {I}={I} _{3}  $ and $  {O}={O} _{3} .  $ If $  \alpha {A}+\beta {A}^{-1}=4 {I},  $ then $  \alpha+\beta  $ is equal to :

  1. 8

  2. 7

  3. 13

  4. 12


Correct Option: D

Suppose $A$ is any $3\times3$ non-singular matrix and $(A-3I)(A-5I)=O$,where $I=I _{3}$ and $O=O _{3}$.If $\alpha A+\beta A^{-1}=8I$ ,then $\alpha+\beta$ is equal to:

  1. $8$

  2. $7$

  3. $16$

  4. $12$


Correct Option: C
Explanation:

Given,  $(A-3I)(A-5I)=O$ for a $3\times 3$ non-singular matrix.

or, $A^2-8A+15I=O$
or, $A-8I+15A^{-1}=O$ [ Since $A$ is non-singular ($A^{-1}$ exists) then multiplying both sides with $A^{-1}$]
or, $A+15A^{-1}=8I$.
Comparing this with the given equation we get, $\alpha=1, \beta=15$.
So $\alpha+\beta=1+15=16$.

Let $A$ be a square matrix all of whose entries are integers, then which of the following is true?

  1. If $\displaystyle \left | A\right | \neq \pm 1 $, then $\displaystyle A^{-1} $ exist & all its entries are non-integer

  2. If $\displaystyle \left | A\right | = \pm 1 $, then $\displaystyle A^{-1} $ exist & all its entries are integer

  3. If $\displaystyle \left | A\right | = \pm 1 $,then $\displaystyle A^{-1} $ need not exist

  4. If $\displaystyle \left | A\right | = \pm 1 $, then $\displaystyle A^{-1} $ exist but all its entries are not necessarily integers.


Correct Option: B
Explanation:

Given A is a square matrix with all entries as integer
(a) Now $\displaystyle \left|A\right|\neq 1,-1$ mean it may be zero also $\displaystyle \left|A\right| =0,$then $\displaystyle A^{-1}$ does'not exist $\displaystyle \therefore $ choice (a) is false.

(b) If $\displaystyle \left|A\right| =1,-1$ then $\displaystyle A^{-1}$ certainly exist but A is a square matrix with all integral entries so all cofactors are integers .So adj. A matrix has all integral entries .
$\displaystyle A^{-1}=\frac{1}{\left|A\right| }(adj A)=\pm(adj A) $
$\therefore $ choice (b) is correct.

(c) $\displaystyle \left|A\right| =1,-1 $ $\displaystyle \therefore $ $\displaystyle A^{-1}$ must exist but given $\displaystyle A^{-1}$ does not exist which is false result $\displaystyle \therefore $  choice (c) is incorrect

(d) $\displaystyle \left|A\right| =1,-1$ it is true that $\displaystyle A^{-1}$ exist but we have to follow that A has all integral entries but choice (d) says that it is not necessarily that entries are integer which mean adj. A, may or may not be with integral entries. Hence choice (d) is false.

If $A = \begin{bmatrix}1 & k & 3\ 3 & k & -2 \ 2 & 3 & -4\end{bmatrix}$ is singular then $k = ?$

  1. $\dfrac {16}{3}$

  2. $\dfrac {34}{5}$

  3. $\dfrac {33}{2}$

  4. None of these


Correct Option: C

If $A$ is an invertible matrix. then which of the followings are true:

  1. $A\neq 0$

  2. Adj. $A\neq 0$

  3. $|A|\neq 0$

  4. $A^{-1}=|A|:Adj. A.$


Correct Option: A,B,C
Explanation:
A is invertible matrix
$\Rightarrow { A }^{ -1 }$ exists
$\Rightarrow \left| A \right| \neq 0$
$AdjA\neq 0$
$A\neq 0$
Option A, B, C are correct

If $A =\begin{bmatrix}4 &x+2 \2x-3 &x+1 \end{bmatrix}$ is an invertible matrix, then $x$ cannot take value

  1. -1

  2. 2

  3. 3

  4. none of these


Correct Option: D

Let $A$ be a square matrix of order $n\times n$ and let $P$ be a non-singular matrix, then which of the following matrices have the same characteristic roots.

  1. $A$ and $PA$

  2. $A$ and $AP$

  3. $A$ and $P^{-1}AP$

  4. none of these


Correct Option: C
Explanation:

Let the characteristic root of $A$ be $\lambda $.


$\displaystyle \Rightarrow \left| A-\lambda I \right| =0$

For $\displaystyle { P }^{ -1 }AP;\left| { P }^{ -1 }AP-\lambda I \right| =\left| { P }^{ -1 }AP-\lambda { P }^{ -1 }PI \right| =\left| { P }^{ -1 } \right| \left| A-\lambda I \right| \left| P \right| =\left| A-\lambda 1 \right| .$

$\Rightarrow \lambda $ is also characteristic roots of matrix $\displaystyle { P }^{ -1 }AP$

If $A, : B : and : C$ are three square matrices of the same order, then $AB = AC\Rightarrow  B = C$ if

  1. $|A|\neq 0$

  2. $A$ is invertible

  3. $A$ is orthogonal

  4. $A$ is symmetric


Correct Option: A,B,C
Explanation:

$AB=AC\Rightarrow B=C$

When $\left| A \right| \neq 0$

Hence $A$ in invertible and orthogonal

Let $A$ be an $n\times n$ matrix such that $A^n=\alpha A,$ where $\alpha$ is a real number different from $1$ and $-1$. Then, the matrix $A+I _n$ is

  1. singular

  2. non-singular, i.e., invertible

  3. scalar

  4. None of these


Correct Option: B
Explanation:

Let $B=A+{ I } _{ n }$.


Since $A=B-{ I } _{ n }$, the condition ${ A }^{ n }=\alpha A$ can be written in the form $\displaystyle { \left( { B-I } _{ n } \right)  }^{ n }\alpha \left( B-{ I } _{ n } \right) $

$\displaystyle \Rightarrow { B }^{ n }-^{ n }{ { C } _{ 1 } }{ B }^{ n-1 }+^{ n }{ { C } _{ 2 } }{ B }^{ n-2 }+...+{ \left( -1 \right)  }^{ n }{ I } _{ n }=\alpha B-\alpha { I } _{ n }$

$\displaystyle \Rightarrow { B }^{ n }-^{ n }{ { C } _{ 1 } }{ B }^{ n-1 }+^{ n }{ C } _{ 2 }{ B }^{ n-2 }+...+{ \left( -1 \right)  }^{ n-1 }B-\alpha B=-\alpha { I } _{ n }-{ \left( -1 \right)  }^{ n }{ I } _{ n },$

$\displaystyle \Rightarrow B\left( { B }^{ n-1 }-^{ n }{ { C } _{ 1 }{ B }^{ n-2 }+^{ n }{ { C } _{ 2 } }{ B }^{ n-3 }+...+{ \left( -1 \right)  }^{ n-1 }{ I } _{ n }-\alpha { I } _{ n } } \right) =\left[ { \left( -1 \right)  }^{ n+1 }-\alpha  \right] { I } _{ n }.$

Since $\displaystyle { \left( -1 \right)  }^{ n+1 }-\alpha \neq 0,\left[ \because \alpha \neq \pm 1 \right] $

$\therefore$ $B$ is invertible 

Matrix $\begin{bmatrix}a & b &(a\alpha -b) \b  & c & (b\alpha -c)\2 & 1 & 0\end{bmatrix}$ is non invertible if 

  1. $\alpha = 1/2$

  2. a, b, c are in A.P.

  3. a, b, c are in G.P.

  4. a, b, c are in H.P.


Correct Option: A,C
Explanation:

$\Delta =\begin{vmatrix} a & b & (a\alpha -b) \ b & c & (b\alpha -c) \ 2 & 1 & 0 \end{vmatrix}\ =2\left( b(b\alpha -c)-c(a\alpha -b) \right) -1\left( a(b\alpha -c)-b(a\alpha -b) \right)$

 
Expanding along $R _3$

$ =2{ b }^{ 2 }\alpha -2bc-2ac\alpha +2bc-ab\alpha +ca+ab\alpha -{ b }^{ 2 }\\ =\left( { b }^{ 2 }-ac \right) \left( 2\alpha -1 \right) $

Matrix is non invertible when $\Delta =0$
i.e $\displaystyle\alpha=\frac{1}{2}$ and $a,b,c$ are in $G.P$

If $\left |\begin{matrix}1 & -1 &x \ 1 & x & 1\ x & -1 & 1\end{matrix} \right|$ has no inverse, then the real value of $x$ can be is

  1. 2

  2. 3

  3. 0

  4. 1


Correct Option: D
Explanation:
$\begin{vmatrix} 1 & -1 & x \\ 1 & x & 1 \\ x & -1 & 1 \end{vmatrix}$
No inverse
$\Rightarrow \left| A \right| =0$
$x+1+1(1-x)+x(-1-{ x }^{ 2 })=0$
$x+1+1-x-x-{ x }^{ 3 }=0$
${ x }^{ 3 }-x-2=0$
$\Rightarrow { x }^{ 3 }+2x-x-2=0$
$\left( { x }^{ 2 }-1 \right) \left( x+2 \right) =0$
$\Rightarrow x=\pm 1,x=-2$
Real value of $x=1$
Option D

If $A$ and $B$ are any two matrices such that $AB = 0$ and $A$ is non-singular, then

  1. $B = 0$

  2. $B$ is singular

  3. $B$ is non-singular

  4. $B = A$


Correct Option: A
Explanation:
Given that $AB = 0$, taking determinants on both sides, we have
$|A\cdot B| = 0$
$\therefore |A| \times |B| = 0$
Product of two numbers is zero if one of them is zero.
Since $A$ is non-singular matrix, $B$ has to be singular, meaning that its determinant has to be zero.
The matrix need not be zero.

If the matrix $\begin{bmatrix} -1& 3 &2 \1&k&-3\1&4&5\end{bmatrix}$ has an inverse then the values of $k$.

  1. $k$ is any real number

  2. $k = -4$

  3. $k \neq -4$

  4. $k \neq 4$


Correct Option: C
Explanation:
For a matrix to be invertible, its determinant must not be zero.
$\therefore -1(5k + 12) - 3(5 - (-3)) + 2(4 - k) \neq 0$
$\therefore -5k - 12 - 24 + 8 - 2k \neq 0$
$\therefore -7k \neq 28$
$\therefore k \neq -4$

The matrix $A=\begin{bmatrix}1&3&2\1&x-1&1\2&7&x-3\end{bmatrix}$ will have inverse for every real number x except for

  1. $x=\dfrac{11\pm \sqrt{5}}{2}$

  2. $x=\dfrac{9\pm \sqrt{5}}{2}$

  3. $x=\dfrac{11\pm \sqrt{3}}{2}$

  4. $x=\dfrac{9\pm \sqrt{3}}{2}$


Correct Option: A
Explanation:

Solution:

For $A$ have a inverse, $|A|\neq 0.$
$|A|={(x-1)(x-3)-7}+3{2-(x-3)}+2{7-2(x-1)}$
$=x^2-4x+3-7+6-3x+9+14-4x+4$
$=x^2-11x+29$
$=\left(x-\cfrac{11+\sqrt5}{2}\right)\left(x-\cfrac{11-\sqrt5}{2}\right)$
So, $|A|\neq0$
$x\neq\left(\cfrac{11\pm\sqrt5}{2}\right)$
i.e. for $x=\cfrac{11\pm\sqrt5}{2}$ matrix $A$ will not have its inverse.
Hence, A is the correct option.

If $A=\begin{bmatrix} 3 & -1+x & 2 \ 3 & -1 & x+2 \ x+3 & -1 & 2 \end{bmatrix}$ is singular matrix and $x\in [-5, -2]$ then x=?$

  1. $0$

  2. $-2$

  3. $-4$

  4. $0, -4$


Correct Option: C
Explanation:

Given $A=\begin{bmatrix} 3 & -1+x & 2 \ 3 & -1 & x+2 \ x+3 & -1 & 2 \end{bmatrix}$ is a singular matrix.


$\therefore |A|=0$

$\begin{vmatrix}3&-1+x&2\3&-1&x+2\x+3&-1&2\end{vmatrix}=0$

$\Rightarrow 3(-2+x+2)-(-1+x)(6-(x+3)(x+2))+2(-3+x+3)=0$

$\Rightarrow 3x-(x-1)(6-x^2-5x-6)+2x=0$

$\Rightarrow 5x-(x-1)(-x^2-5x)=0$

$\Rightarrow 5x-(-x^3-5x^2+x^2+5x)=0$

$\Rightarrow 5x+x^3+4x^2-5x=0$

$\Rightarrow x^3+4x^2=0$

$\Rightarrow x^2(x+4)=0$

$\Rightarrow x=0:and\;x=-4$

It is given that $x\in [-5,-2]$

$\therefore x=-4$

If $A=\begin{bmatrix} 0 & x & 16 \ x & 5 & 7 \ 0 & 9 & x \end{bmatrix}$ is singular, then the possible values of $x$ are

  1. $0, \pm 1$

  2. $0, \pm 12$

  3. $0, \pm 5$

  4. $0, \pm 4$


Correct Option: B
Explanation:

$\begin{array}{l} { { Sin } }gular\, \, means \ \left| A \right| =0 \ \left( { \begin{array} { *{ 20 }{ c } }0 & x & { 16 } \ x & 5 & 7 \ 0 & 9 & x \end{array} } \right) =0 \ 0\left( { 51-63 } \right) -x\left( { { x^{ 2 } } } \right) +16\left( { 9x } \right) =0 \ -{ x^{ 3 } }+144x=0 \ { x^{ 3` } }-144x=0 \ x\left( { { x^{ 2 } }-144 } \right) =0 \ x=0 \ { x^{ 2 } }-144=0 \ { x^{ 2 } }=144 \ x=\pm 12 \ x=0,\pm 12 \end{array}$


Hence, this is the answer.

If $\omega\neq 1$ is a cube root of unity, then


$A=\begin{bmatrix}1+2\omega ^{100}+\omega ^{200}&\omega ^2  &1  \1 &1+\omega ^{101}+2\omega ^{202}  &\omega  \\omega  & \omega ^2 &2+ \omega ^{100}+2\omega ^{200}\end{bmatrix}$

  1. $A$ is singular

  2. $|A|=0$

  3. $A$ is symmetric

  4. none of these


Correct Option: A,B
Explanation:
$A=\begin{vmatrix} 1+{ \omega  }^{ 100 }+{ \omega  }^{ 200 } & { \omega  }^{ 2 } & 1 \\ 1 & 1+{ \omega  }^{ 101 }+{ \omega  }^{ 202 } & \omega  \\ \omega  & { \omega  }^{ 2 } & 2+{ \omega  }^{ 100 }+{ \omega  }^{ 200 } \end{vmatrix}$

$1+\omega +{ \omega  }^{ 2 }=0$

${ \omega  }^{ 100 }={ \omega  }^{ 99 }\times \omega =\omega $

${ \omega  }^{ 200 }={ \omega  }^{ 198 }\times { \omega  }^{ 2 }={ \omega  }^{ 2 }$

${ \omega  }^{ 101 }={ \omega  }^{ 2 }$${ \omega  }^{ 202 }={ \omega  }^{ 4 }=\omega $

$A=\begin{vmatrix} 1+2{ \omega  }+{ \omega  }^{ 2 } & { \omega  }^{ 2 } & 1 \\ 1 & 1+{ \omega  }^{ 2 }+{ 2\omega  } & \omega  \\ \omega  & { \omega  }^{ 2 } & 2+{ \omega  }+2{ \omega  }^{ 2 } \end{vmatrix}$

$A=\begin{vmatrix} { \omega  } & { \omega  }^{ 2 } & 1 \\ 1 & { \omega  } & \omega  \\ \omega  & { \omega  }^{ 2 } & -{ \omega  } \end{vmatrix}$

$A=\omega \begin{vmatrix} { \omega  } & { \omega  } & 1 \\ 1 & { 1 } & \omega  \\ \omega  & { \omega  } & -{ \omega  } \end{vmatrix}$

${ C } _{ 1 }\& { C } _{ 2 }$are same

$\left| A \right| =0$

$A\rightarrow $singular

$\triangle =0$
Option A and B

If $\displaystyle A=\begin{bmatrix} \frac{1}{2}\left ( e^{ix}+ e^{-ix}\right )&\frac{1}{2}\left ( e^{ix}- e^{-ix}\right ) \\frac{1}{2}\left ( e^{ix}- e^{-ix}\right ) &\frac{1}{2}\left ( e^{ix}+ e^{-ix}\right ) \end{bmatrix}$ then $A^{-1}$ exists

  1. for all real $x$

  2. for positive real $x$ only

  3. for negative real $x$ only

  4. none of these


Correct Option: A
Explanation:

$\displaystyle A=\begin{bmatrix} \frac{1}{2}\left ( e^{ix}+ e^{-ix}\right )&\frac{1}{2}\left ( e^{ix}- e^{-ix}\right ) \\frac{1}{2}\left ( e^{ix}- e^{-ix}\right ) &\frac{1}{2}\left ( e^{ix}+ e^{-ix}\right ) \end{bmatrix}$

$\Rightarrow A=\begin{bmatrix} coshx&sinhx\sinhx & coshx\end{bmatrix}$

$|A|=cosh^2x-sinh^2x=1$

$\therefore A^{-1}$ exists or all $x$

Hence, option A.

Let $A$ and $B$ be two non-null square matrices. If the product $AB$ is a null matrix, then

  1. $A$ is singular

  2. $B$ is singular

  3. $A$ is non-singular

  4. $B$ is non-singular


Correct Option: A,B
Explanation:

Let $B$ be non-singular, then ${ B }^{ -1 }$ exists.

Now, $AB=0($ given$) \Rightarrow \left( AB \right) { B }^{ -1 }=0{ B }^{ -1 }$
$($ post multiplying both sides by ${ B }^{ -1 })$
$\Rightarrow A\left( B{ B }^{ -1 } \right) =0$     $($ by associativity $)$
$\Rightarrow A{ I } _{ n }=0\quad \quad \quad \left( \because B{ B }^{ -1 }={ I } _{ n } \right) $
$\Rightarrow A=0$
But $A$ is a non-null matrix.
Hence $B$ is a singular matrix.
Similarly, it can be shown that $A$ is a singular matrix.

Let $A=\begin{bmatrix}x+\lambda& x&x\x &x+\lambda&x\x&x&x+\lambda  \end{bmatrix}$, then $A^{-1}$ exists if

  1. $x\neq 0$

  2. $\lambda \neq 0$

  3. $3x+\lambda \neq 0, \lambda \neq 0$

  4. $x\neq 0, \lambda \neq 0$


Correct Option: C
Explanation:

$A=\left[ \begin{matrix} x+\lambda  & x & x \ x & x+\lambda  & x \ x & x & x+\lambda  \end{matrix} \right] $
${ A }^{ -1 }$ exists if $\left| A \right| \neq 0$
$\left| A \right| =\left| \begin{matrix} x+\lambda  & x & x \ x & x+\lambda  & x \ x & x & x+\lambda  \end{matrix} \right| \neq 0$
${ R } _{ 1 }\rightarrow { R } _{ 1 }+{ R } _{ 2 }+{ R } _{ 3 }$
$\left( 3x+\lambda  \right) \left| \begin{matrix} 1 & 1 & 1 \ x & x+\lambda  & x \ x & x & x+\lambda  \end{matrix} \right| \neq 0$
${ C } _{ 2 }\rightarrow { C } _{ 2 }-{ C } _{ 1 }$ and ${ C } _{ 3 }\rightarrow { C } _{ 3 }-{ C } _{ 1 }$
$\left( 3x+\lambda  \right) \left| \begin{matrix} 1 & 0 & 0 \ x & \lambda  & 0 \ x & 0 & \lambda  \end{matrix} \right| \neq 0$
$\left( 3x+\lambda  \right) { \left[ { \lambda  }^{ 2 } \right]  }\neq 0$
$3x+\lambda \neq 0,\lambda \neq 0$

If adj $B=A$ and $|P|=|Q|=1$, then $adj (\left( { Q }^{ -1 }{ BP }^{ -1 } \right)$ is equal ?

  1. $APQ$

  2. $PAQ$

  3. $B$

  4. $A$


Correct Option: A
Explanation:

$adj\left| { A }^{ -1 } \right| =\frac { A }{ \left| A \right|  } $


$adj\left| { Q }^{ -1 }{ BP }^{ -1 } \right| =adj\left| { P }^{ -1 } \right| \ast adj\left| { B } \right| \ast adj\left| { Q }^{ -1 } \right| =\frac { P }{ \left| P \right|  } \ast A\ast \frac { Q }{ \left| Q \right|  } =PAQ$

- Hide questions