0

Terms related to matrices - class-XII

Description: terms related to matrices
Number of Questions: 40
Created by:
Tags: maths matrices and determinants algebra matrices
Attempted 0/37 Correct 0 Score 0

 For what value of
k, the matrix $A = \begin{bmatrix} 4 & 3 -k\\ 1 & 2 \end{bmatrix}$ is
not invertible?

  1. (a)$k = -5,$

  2. (b)$k=5,$

  3. (c)$k=0$

  4. (d)$k=3$


Correct Option: A

If the traces of $A, B$ are $20$ and $-8$, then the trace of $A+B$ is:

  1. $12$

  2. $-12$

  3. $28$

  4. $-28$


Correct Option: A
Explanation:

 the trace of an $n\times n$ square matrix A is defined to be the sum of the elements on the main diagonal (the diagonal from the upper left to the lower right) of A

the traces of A,B are 20 and −8, then the trace of $A+B$ is $trac(A+B)=trace(A)+trac(B)=20+-8=12$

If $A$ is a $3\times3$ skew-symmetric matrix, then the trace of $A$ is equal to

  1. $-1$

  2. $1$

  3. $|A|$

  4. $0$


Correct Option: D
Explanation:

We know that in a skew-symmetric matrix, diagonal elements are always 0.
So, its trace is 0.

If$A=\left[ \begin{matrix} 1 & -5 & 7 \ 0 & 7 & 9 \ 11 & 8 & 9 \end{matrix} \right] $ , then  trace of matrix $A$ is

  1. $17$

  2. $25$

  3. $3$

  4. $12$


Correct Option: A
Explanation:

Given, $A=\left[ \begin{matrix} 1 & -5 & 7 \ 0 & 7 & 9 \ 11 & 8 & 9 \end{matrix} \right] $
$tr(A)=sum\ of\ diagonal\ matrix$
$tr(A)=1+7+9=17$

If $\displaystyle :A= \left [ a _{ij} \right ]$ is a scalar matrix of order $\displaystyle :n\times n$ such that $\displaystyle :a _{ij}= k $ for all then trace of A is equal to

  1. $\displaystyle :nk$

  2. $\displaystyle :n+k$

  3. $\displaystyle :n/k$

  4. none of these


Correct Option: A
Explanation:

By definition of trace of a scalar matrix of order n, 
$tr(A)=a _{11}+ a _{22}+a _{33}+.....+a _{nn}$

$=k+k+....k $ (upto n times)

$tr(A)=nk$

If $\displaystyle :A= \left [ a _{ij} \right ]$ is a scalar matrix, then trace of A is

  1. $\displaystyle :\sum _{i} \sum _{i} a _{ij}$

  2. $\displaystyle :\sum _{i} a _{ij}$

  3. $: \sum _{ i } a _{ ij }\times { a } _{ ji }$

  4. None of these


Correct Option: B
Explanation:

By definition of trace of a matrix of order n, 
$tr(A)=a _{11}+ a _{22}+a _{33}+.....+a _{nn}$
$\displaystyle =: \sum _{ i=j }  { a } _{ ij } =: \sum _{ i } a _{ ij }$
Hence, option 'B' is correct.

If A is a skew-symmetric matrix, then trace of A is

  1. 1

  2. -1

  3. 0

  4. none of these


Correct Option: C
Explanation:

We know that for a skew-symmetric matrix the sum of diagonal elements is zero.
$a _{ij}=0    \forall i=j$
So,$ tr (A)=0$

If $A=\begin{bmatrix} 1 & -5 & 7 \ 0 & 7 & 9 \ 11 & 8 & 9 \end{bmatrix}$, then the value of tr $A$ is

  1. $17$

  2. $25$

  3. $3$

  4. $12$


Correct Option: A
Explanation:

$A=\begin{bmatrix} 1 & -5 & 7 \ 0 & 7 & 9 \ 11 & 8 & 9 \end{bmatrix}$
$trace(A)=$sum of diagonal elements$=1+7+9=17$

Ans: A

If $A = \left[ {{a _{ij}}} \right]$ and ${a _{ij}} = i\left( {i + j} \right)$ then trace of $A=$

  1. $\frac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6}$

  2. $\frac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{3}$

  3. $\frac{{n\left( {n + 1} \right)}}{2}$

  4. $\frac{{{n^2}{{\left( {n + 1} \right)}^2}}}{4}$


Correct Option: B
Explanation:

Given $A=[a _{i,j}]$ and  $a _{i,j}=i(i+j)$ 

let the order of $A$ = $n\times n$

trace of $A$ =sum of all diagonal elements i.e.,$\sum[a _{i,j}]$ where $i=j$

$a _{1,1}=1(1+1)=2$
$a _{2,2}=2(2+2)=8$
$a _{3,3}=3(3+3)=18$
              $.$
              $.$
              $.$
$a _{n,n}=n(n+n)=2n^2$


$Trace$ $of$ $ A=$ $a _{1,1}+a _{2,2}+a _{3,3}+...........+a _{n,n}$ 
              $A=$  $2+8+18+.................+2n^2$
              $A=$  $2[1+4+9+................n^2]$

              $A=$  $2 \times [\frac{n(n+1)(2n+1)}{6}]$

              $A=$  $\frac{n(n+1)(2n+1)}{3}$

               $\therefore Opt$ $is$ $[B]$

If $tr(A)=3, tr(B)=5$, then $tr(AB)$=

  1. $15$

  2. $8$

  3. $3/5$

  4. $cannot\ say$


Correct Option: D

Let $A+2B=\begin{bmatrix} 1 & 2 & 0 \ 6 & -3 & 3 \ -5 & 3 & 1 \end{bmatrix}$ and $2A-B=\begin{bmatrix} 2 & -1 & 5 \ 2 & -1 & 6 \ 0 & 1 & 2 \end{bmatrix}$, then $tr(A)-tr(B)$ has the value equal to

  1. 0

  2. 1

  3. 2

  4. none of these


Correct Option: C
Explanation:

$A+2B=\begin{bmatrix} 1 & 2 & 0 \ 6 & -3 & 3 \ -5 & 3 & 1 \end{bmatrix}$         .....(i)

$2A-B=\begin{bmatrix} 2 & -1 & 5 \ 2 & -1 & 6 \ 0 & 1 & 2 \end{bmatrix}$         .....(ii)

$\Rightarrow 4A-2B=\begin{bmatrix} 4 & -2 & 10 \ 4 & -2 & 12 \ 0 & 2 & 4 \end{bmatrix}$      ....(iii)

Adding (i) and (iii), we get
$5A=\begin{bmatrix} 5 & 0 & 10 \ 10 & -5 & 15 \ -5 & 5 & 5 \end{bmatrix}$

$\Rightarrow A=\begin{bmatrix} 1 & 0 & 2 \ 2 & -1 & 3 \ -1 & 1 & 1 \end{bmatrix}$
So, $tr(A)=1$

Now, by eq(ii),
$B=\begin{bmatrix} 2 & 0 & 4 \ 4 & -2 & 6 \ -2 & 2 & 2 \end{bmatrix}-\begin{bmatrix} 2 & -1 & 5 \ 2 & -1 & 6 \ 0 & 1 & 2 \end{bmatrix}$

$\Rightarrow B=\begin{bmatrix} 0 & 1 & -1 \ 2 & -1 & 0 \ -2 & 1 & 0 \end{bmatrix}$
So, $tr(B)=-1$
Now, $tr(A)-tr(B)=1+1=2$

If $A = \begin{bmatrix}2 & 3 & 4\ 5 & -3 & 8\ 9 & 2 & 16\end{bmatrix}$, then trace of A is,

  1. 17

  2. 25

  3. 8

  4. 15


Correct Option: D
Explanation:

Given $A = \begin{bmatrix}2 & 3 & 4\ 5 & -3 & 8\ 9 & 2 & 16\end{bmatrix}$

$tr(A)=2-3+16=15$

If $A=[a _{ij}] _{n\times n}$ and $a _{ij}=i(i+j)$ then trace of $A=$

  1. $\dfrac{n(n+1)(2n+1)}{6}$

  2. $\dfrac{n(n+1)(2n+1)}{3}$

  3. $\dfrac{n(n+1)}{2}$

  4. $\dfrac{n^{2}(n+1)^{2}}{4}$


Correct Option: A

Let $A$ be the $2\times2$ matrices given by $A=\left[a _{ij}\right]$ where $a _{ij} = \left{0,1,2,3,4\right}$ such that $a _{11} + a _{12} + a _{21} + a _{22} = 4$
Find the number of matrices $A$ such that the trace of $A$ is equal to 4

  1. 3

  2. 4

  3. 5

  4. 6


Correct Option: C
Explanation:

Given $tr(A)=4$
$\Rightarrow a _{11}+a _{22}=4$

$a _{ ij }={ { 0,1,2,3,4}  }$

So, diagonal entries of A can be 0 and 4 , 4 and 0, 1 and 3, 3 and 1, 2 and 2,
Hence, 5 matrices are possible

If $A=[a _{ij}]$ is a scalar matrix then the trace of $A$ is

  1. $\displaystyle \sum _{i}a _{ij}$

  2. $\displaystyle \sum _{f}a _{ij}$

  3. $\displaystyle \sum _{i}\sum _{i}a _{ij}$

  4. $\displaystyle \sum _{i}a _{ij}$


Correct Option: A

If $A=\begin{bmatrix} 2 & 1 \ 4 & 1 \end{bmatrix}; B=\begin{bmatrix} 3 & 4 \ 2 & 3 \end{bmatrix}$ and $C=\begin{bmatrix} 3 & -4 \ -2 & 3 \end{bmatrix}$ then $tr(A)+tr\left( \dfrac { ABC }{ 2 }  \right) +tr\left( \dfrac { A{ \left( BC \right)  }^{ 2 } }{ 4 }  \right) +tr\left( \dfrac { A{ \left( BC \right)  }^{ 3 } }{ 8 }  \right) +......\infty $ =

  1. $6$

  2. $9$

  3. $12$

  4. $15$


Correct Option: A

Consider three matrices A= $ \begin{bmatrix} 2 & 1 \ 4 & 1 \end{bmatrix} $, $ B = \begin{bmatrix} 3 & 4 \ 2 & 3 \end{bmatrix} $ and $ C = \begin{bmatrix} 3 & -4 \ -2 & 3 \end{bmatrix} $ Then the value of the sum 
$ tr(A)+tr \cfrac {(ABC) } {2} +tr \cfrac {A( {BC})^2} {4}+ \cfrac {A( {BC})^3} {2}  +...+ \infty               $is

  1. 6

  2. 9

  3. 12

  4. None of these


Correct Option: C

 $P=\left[ \begin{matrix} { 5a }^{ 2 }+2bc & 6 & 8 \ 13 & { 8b }^{ 2 }-10ac & -9 \ -7 & 5 & { 25c }^{ 2 } \end{matrix} \right]$ and $Q=\left[ \begin{matrix} { a }^{ 2 }+6bc & 3 & 5 \ 12 & { -b }^{ 2 } & 6 \ 1 & 4 & { 17bc }^{ 2 } \end{matrix} \right] a,b$ & $c \epsilon N$, if trace $\left(P\right)=trac\left(Q\right)$, and $a,b$ & $C$ are sides of $\Delta ABC$ with $BC=a,CA=b$ & $AB=C$ then $\cos A$ is:

  1. $\dfrac{-79}{120}$

  2. $\dfrac{-89}{120}$

  3. $\dfrac{-33}{40}$

  4. $\dfrac{-31}{40}$


Correct Option: A

If $\left( \begin{array} { l l } { 3 } & { 2 } \ { 7 } & { 5 } \end{array} \right) A \left( \begin{array} { c c } { - 1 } & { 1 } \ { - 2 } & { 1 } \end{array} \right) = \left( \begin{array} { c c } { 2 } & { - 1 } \ { 0 } & { 4 } \end{array} \right)$  then trace of  $A$  is equal to

  1. $-25$

  2. $-21$

  3. $-15$

  4. $-11$


Correct Option: A

Let  $A=\left[ \begin{matrix} p & q \ q & p \end{matrix} \right] $ such that det(A)=r where p,q,r all prime numbers, then trace of A is equal to 

  1. 6

  2. 5

  3. 2

  4. 3


Correct Option: A

Let three matrices $A=\begin{bmatrix} 2 & 1\ 4 & 1\end{bmatrix}; B\begin{bmatrix} 3 & 4\ 2 & 3\end{bmatrix}$ and $C=\begin{bmatrix} 3 & -4\ -2 & 3\end{bmatrix}$ then $t _r(A)+t _r\left(\dfrac{ABC}{2}\right)+t _r\left(\dfrac{A(BC)^2}{4}\right)+t _r\left(\dfrac{A(BC)^3}{8}\right)+.....+\infty =?$

  1. $6$

  2. $9$

  3. $12$

  4. None of these


Correct Option: A

If $A=\begin{bmatrix} 2 & 1 \ 4 & 1 \end{bmatrix}$, $B=\begin{bmatrix} 3 & 4 \ 2 & 3 \end{bmatrix}$ and $C=\begin{bmatrix} 3 & -4 \ -2 & 3 \end{bmatrix}$, then $\displaystyle tr(A)+tr\left(\frac{ABC}{2}  \right)+tr\left(\frac{A{(BC)}^{2}}{4}  \right)+tr\left(\frac{A{(BC)}^{2}}{8}  \right)+...+\infty=  $

  1. $6$

  2. $9$

  3. $12$

  4. $15$


Correct Option: A

The trace of the matrix $A = \begin{bmatrix}1 & -5 & 7\ 0 & 7 & 9\ 11 & 8 & 9\end{bmatrix}$ is

  1. $17$

  2. $25$

  3. $3$

  4. $12$


Correct Option: A
Explanation:

Given,  $A = \begin{bmatrix}1 & -5 & 7\ 0 & 7 & 9\ 11 & 8 & 9\end{bmatrix}$ .


Now trace of $A=$ sum of the diagonal elements of $A$.

So trace of $A=1+7+9=17$.

If $A = [a _{ij}]$ is a scalar matrix of order $n\times n$ such that $a _{ii} = k$ for all $i$, then trace of $A$ is equal to

  1. $nk$

  2. $n + k$

  3. $\dfrac {n}{k}$

  4. None of these


Correct Option: A
Explanation:

Given $A = [a _{ij}]$ is a scalar matrix of order $n\times n$ such that $a _{ii} = k$ for all $i$.


The trace of a square matrix is defined to be the sum of the diagonal elements.

Now, trace $(A)=\displaystyle\sum\limits _{i=1}^n a _{ii}=$$\displaystyle\sum\limits _{i=1}^n k=nk.$

If $A$ is a $3\times 3$ skew-symmetric matrix, then trace of $A$ is equal to

  1. $1$

  2. $|A|$

  3. $-1$

  4. none of these


Correct Option: B
Explanation:

As $A$ is a skew symmetric matrix
                   $A' = -A$
$\Rightarrow  a _{ii}=0 : \forall : i \Rightarrow trace : (A) =0$
Also             $|A|=|A'|=|-A|=(-1)^3|A|$
$\Rightarrow  2|A|=0\Rightarrow |A|=0$
Hence, option B.

If $A$ is $2\times 2$ matrix such that $A^2 = 0$, then $tr :(A)$ is

  1. 1

  2. 0

  3. -1

  4. none of these


Correct Option: B
Explanation:

If $A = 0,tr(A)=0$.

Suppose $A\neq 0$ and $A =\begin{bmatrix}a

&b \c &d \end{bmatrix}$, then $|A|=0$ and


$A^2-(a+d)A+ad-bc=0$

$\Rightarrow a+d=0$

$\therefore tr(A)=0$

Hence, option B.

If $A =\begin{bmatrix} 1&9  & -7\ i & \omega^n & 8\ 1 & 6 &\omega^{2n} \end{bmatrix}$ where $i= \sqrt{-1} $ and $\omega$ is complex cube root of unity, then tr(A) will be 

  1. $1, \,if \,n = 3k,\, k \in\, N$

  2. $3, \,if \,n = 3k,\, k \in\, N$

  3. $0,\, if \,n\neq \,3k,\, k \epsilon \in N$

  4. $-1,\, if \,n\neq \,3k, \,k \epsilon \in N$


Correct Option: B,C
Explanation:

$tr(A)=1+\omega^n+\omega^{2n}$
if $n=3k$ i.e Mutiple of $3$.
$\Rightarrow tr(A)=1+\omega^{3k}+\omega^{6k}=1+1+1=3$
if $n\neq 3k$ i.e not a multiple of $3$.
then $n=3k+1$ or $n=3k+2$
$\Rightarrow tr(A)=1+\omega^{3k+1}+\omega^{2(3k+1)}=1+\omega+\omega^2=0$
Hence, options B and C.

For $\alpha, \beta, \gamma \in R$, let $A=\begin{bmatrix} { \alpha  }^{ 2 } & 6 & 8 \ 3 & { \beta  }^{ 2 } & 9 \ 4 & 5 & { \gamma  }^{ 2 } \end{bmatrix}$ and $B=\begin{bmatrix} 2\alpha  & 3 & 5 \ 2 & 2\beta  & 6 \ 1 & 4 & 2\gamma -3 \end{bmatrix}$. If ${ T } _{ r }(A)={ T } _{ r }(B)$ then the value of $\left( \cfrac { 1 }{ \alpha  } +\cfrac { 1 }{ \beta  } +\cfrac { 1 }{ \gamma  }  \right) $ is-

${ T } _{ r }(A)$ is a Trace(A) of a matrix

  1. $1$

  2. $2$

  3. $3$

  4. $4$


Correct Option: C
Explanation:

${ T } _{ r }(A)={ \alpha  }^{ 2 }+{ \beta  }^{ 2 }+{ \gamma  }^{ 2 }$


${ T } _{ r }(B)=2\alpha +2\beta +2\gamma -3$

$\Rightarrow { \alpha  }^{ 2 }+{ \beta  }^{ 2 }+{ \gamma  }^{ 2 }=2\alpha +2\beta +2\gamma -3$

$\Rightarrow

{ \left( \alpha -1 \right)  }^{ 2 }+{ \left( \beta -1 \right)  }^{ 2

}+{ \left( \gamma -1 \right)  }^{ 2 }=0\quad $
$\Rightarrow \quad

\alpha =\beta =\gamma =1\Rightarrow \quad \cfrac { 1 }{ \alpha  }

+\cfrac { 1 }{ \beta  } +\cfrac { 1 }{ \gamma  } =3$

i. Trace of the matrix is called sum of the elements in a principle diagonal of the square matrix. 
ii. The trace of the matrix $\begin{bmatrix}
8 & 7 &5\
5 &8 & 2\
7 & 2 & 8
\end{bmatrix}$ is 24 Which of the following statement is correct. 

  1. Only i

  2. Only ii

  3. Both i and ii

  4. Neither i nor ii


Correct Option: C
Explanation:
$(i)\rightarrow$definition of matrix
$(ii)$ Sum of elements in principle diagonal
$=8+8+8=24$
Option is correct

If $A=\begin{bmatrix}
1 &4  &7 \
2 &6  &5 \
3 &-1  &2
\end{bmatrix}$ and B $=$ diag (1 2 5), then
trace of matrix $AB^{2}$ is

  1. 74

  2. 75

  3. 529

  4. 23


Correct Option: B
Explanation:

Given, $B=diag(1    2    5)$
$\Rightarrow B^{2}=diag(1     4    25)$

Now, $AB^{2}=\begin{bmatrix}1 &0  &0 \ 0 &24  &0 \ 0 &0  &50 \end{bmatrix}$

$\Rightarrow tr(AB^{2})=1+24+50=75$

Let three matrices $A=\begin{bmatrix} 2 & 1 \ 4 & 1 \end{bmatrix}$; $B=\begin{bmatrix} 3 & 4 \ 2 & 3 \end{bmatrix}$ and $C=\begin{bmatrix} 3 & -4 \ -2 & 3 \end{bmatrix}$ then find
${ tr }\left( A \right) +{ tr }\left( \dfrac { ABC }{ 2 }  \right) { tr }\left( \dfrac { A{ \left( BC \right)  }^{ 2 } }{ 4 }  \right) +{ tr }\left( \dfrac { A{ \left( BC \right)  }^{ 3 } }{ 8 }  \right) +....+\infty $, where $tr(A)$ represents trace of matrix $A$.

  1. $6$

  2. $9$

  3. $12$

  4. $15$


Correct Option: A
Explanation:

$A=\left| \begin{matrix} 2 & 1 \ 4 & 1 \end{matrix} \right| ,\quad B=\left| \begin{matrix} 3 & 4 \ 2 & 3 \end{matrix} \right| ,\quad C=\left| \begin{matrix} 3 & -4 \ -2 & 3 \end{matrix} \right| \ AB\quad =\quad \left| \begin{matrix} 2 & 1 \ 4 & 1 \end{matrix} \right| \left| \begin{matrix} 3 & 4 \ 2 & 3 \end{matrix} \right| \ \qquad =\quad \left| \begin{matrix} 6+2 & 8+3 \ 12+2 & 16+3 \end{matrix} \right| \ \quad \quad \quad =\quad \left| \begin{matrix} 8 & 11 \ 14 & 19 \end{matrix} \right| \ ABC\quad =\quad \left| \begin{matrix} 8 & 11 \ 14 & 19 \end{matrix} \right| \left| \begin{matrix} 3 & -4 \ -2 & 3 \end{matrix} \right| \ \quad \quad \quad \quad \quad =\quad \left| \begin{matrix} 24-22 & -32+33 \ 42-38 & -56+57 \end{matrix} \right| \ \qquad \quad \quad =\quad \left| \begin{matrix} 2 & 1 \ 4 & 1 \end{matrix} \right| \ { (BC) }^{ 2 }\quad =\quad \left| \begin{matrix} 3 & 4 \ 2 & 3 \end{matrix} \right| \left| \begin{matrix} 3 & -4 \ -2 & 3 \end{matrix} \right| \ \qquad \quad \quad =\quad { \left| \begin{matrix} 1 & 0 \ 0 & 1 \end{matrix} \right|  }^{ 2 }$

$tr(A)\quad +\quad tr(\frac { ABC }{ 2 } )\quad +\quad tr(\frac { A{ (BC) }^{ 2 } }{ 4 } )\quad +\quad tr(\frac { A{ (BC) }^{ 3 } }{ 8 } )\quad +\quad .\quad .\quad .\quad +\quad \infty $
$\quad =\quad 3\quad +\quad 2\quad +\quad 1\quad +\quad 0\quad +\quad 0\quad +\quad 0\quad +\quad .\quad .\quad .\quad +\quad \infty \ \quad =\quad 6$

Elements of a matrix $A$ of order $10\times10$ are defined as ${ a } _{ ij }={ w }^{ i+j }$(where $w$ is cube root of unity), then trace ($A$) of the matrix is

  1. $0$

  2. $1$

  3. $3$

  4. none of these


Correct Option: D
Explanation:

Here, $A=\begin{bmatrix} { \omega  }^{ 2 } & { \omega  }^{ 3 } & ... & { \omega  }^{ 11 } \ { \omega  }^{ 3 } & { \omega  }^{ 4 } & ... & { \omega  }^{ 12 } \ ... & ... & ... & ... \ { \omega  }^{ 11 } & { \omega  }^{ 12 } &  & { \omega  }^{ 20 } \end{bmatrix}$

$tr(A)={ \omega  }^{ 2 }+{ \omega  }^{ 4 }+{ \omega  }^{ 6 }+.....+{ \omega  }^{ 20 }$

$=\displaystyle \frac { { \omega  }^{ 2 }(1-{ \omega  }^{ 20 }) }{ 1-{ \omega  }^{ 2 } } $

Let $A=\left[\begin{matrix}2&0&7\0&1&0\1&-2&1\end{matrix}\right]$ and $B=\left[\begin{matrix}-x&14x&7x\0&1&0\x&-4x&-2x\end{matrix}\right]$ are two matrices such that $AB = (AB)^{-1}$ and $AB\ne I$ (where $I$ is an identity matrix of order $3\times3$).
Find the value of $Tr.\left(AB+(AB)^2+(AB)^3+...+(AB)^{100}\right)$ where $Tr.(A)$ denotes the trace of matrix $A$.

  1. 98

  2. 99

  3. 100

  4. 101


Correct Option: C
Explanation:

 $A=\left[\begin{matrix}2&0&7\0&1&0\1&-2&1\end{matrix}\right]$ and $B=\left[\begin{matrix}-x&14x&7x\0&1&0\x&-4x&-2x\end{matrix}\right]$
$AB=\left[\begin{matrix}2&0&7\0&1&0\1&-2&1\end{matrix}\right]\left[\begin{matrix}-x&14x&7x\0&1&0\x&-4x&-2x\end{matrix}\right]=\begin{bmatrix} 5x & 14x & 0 \ 0 & 1 & 0 \ 0 & 10x-2 & 5x \end{bmatrix}$
but,$AB=(AB)^{-1}\Rightarrow (AB)^2=I$
$\Rightarrow (AB)^2=\begin{bmatrix} 5x & 14x & 0 \ 0 & 1 & 0 \ 0 & 10x-2 & 5x \end{bmatrix}\begin{bmatrix} 5x & 14x & 0 \ 0 & 1 & 0 \ 0 & 10x-2 & 5x \end{bmatrix}=\begin{bmatrix} 25x^{ 2 } & 70x^{ 2 }+14x & 0 \ 0 & 1 & 0 \ 0 & (5x+1)(10x-2) & 25x^{ 2 } \end{bmatrix}=\begin{bmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{bmatrix}$
$\Rightarrow x=\displaystyle\frac{-1}{5}$
$Tr.\left(AB+(AB)^2+(AB)^3+...+(AB)^{100}\right)=Tr.\left(AB+I+(AB)+...+I\right)$
$tr(AB)=10x+1=-1$ and $tr(I)=3$
$\therefore Tr.\left(AB+I+(AB)+...+I\right)=(-1+3-1+3......+3)=50(3-1)=100$
Hence, option C.

Let $A=\left[\begin{matrix}1 & \displaystyle\frac{3}{2}\1 & 2\end{matrix}\right], B = \left[\begin{matrix}4 & -3\-2 & 2\end{matrix}\right] \mbox{ and } C _r = \left[\begin{matrix}r.3^r & 2^r\0 & (r-1)3^r\end{matrix}\right]$ be 3 given matrices. Compute the value of $\sum _{r=1}^{50}{tr.\left((AB)^r C _r\right)}.($ where $tr.(A)$ denotes trace of matrix A $)$

  1. $3(49.3^{50}+1)$

  2. $3(49.3^{49}+1)$

  3. $3(49.3^{48}+1)$

  4. None of these


Correct Option: A
Explanation:

Given, $A=\left[\begin{matrix}1 & \displaystyle\frac{3}{2}\1 & 2\end{matrix}\right], B = \left[\begin{matrix}4 & -3\-2 & 2\end{matrix}\right] $

So, $AB=\left[ \begin{matrix} 1 & 0 \ 0 & 1 \end{matrix} \right] $
$\Rightarrow AB=I$

Now, $(AB)^{r} C _r =I \left[\begin{matrix}r.3^r & 2^r\0 & (r-1)3^r\end{matrix}\right]$

$\Rightarrow (AB)^{r} C _r=\left[\begin{matrix}r.3^r & 2^r\0 & (r-1)3^r\end{matrix}\right]$

$\sum _{ r=1 }^{ 50 }{ tr.\left( (AB)^{ r }C _{ r } \right)  } =\sum _{ r=1 }^{ 50 }{ tr\left( C _{ r } \right)  } =\sum _{ r=1 }^{ 50 }{ (2r } -1)3^{ r }$

It is an arithmetico-geometric series
$S _{50}=1.3+3.3^{2}+5.3^{3}+......+99.3^{50}$
$3S _{50}=        3^{2}+3.3^{3}+......+97.3^{50}+99.3^{51}$

$\Rightarrow -2S=3+2.3^{2}+2.{3}^{3}+.....+2.3^{50}-99.3^{51}$

$\Rightarrow -2S=3-99.3^{ 51 }+2(3^{ 2 }+{ 3 }^{ 3 }+.....+3^{ 50 })$

$\Rightarrow -2S=3-99.3^{ 51 }+3^{ 51 }-3^{ 2 }$

$\Rightarrow S=3(1+49.3^{ 50 })$

Let $A=\left[\begin{matrix}3x^2\1\6x\end{matrix}\right], B=[a,b,c]$ and $C=\left[\begin{matrix}(x+2)^2&5x^2&2x\5x^2&2x&(x+2)^2\2x&(x+2)^2&5x^2\end{matrix}\right]$ be three given matrices, where $a,b,c$ and $x\in R$, Given that $tr.(AB) = tr.(C) \vee x\in R$, where $tr.(A)$ denotes trace of $A$. Find the value of $(a+b+c)$

  1. 6

  2. 7

  3. 8

  4. 9


Correct Option: B
Explanation:

Given $A=\left[\begin{matrix}3x^2\1\6x\end{matrix}\right], B=[a,b,c]$ 

Here, $AB=\left[ \begin{matrix} 3x^{ 2 } \ 1 \ 6x \end{matrix} \right] [a,b,c]$

$\Rightarrow AB=\left[ \begin{matrix} 3ax^{ 2 } & 3bx^{ 2 } & 3cx^{ 2 } \ a & b & c \ 6ax & 6bx & 6cx \end{matrix} \right] $

$tr(AB)=3ax^{2}+b+6cx$

Now, given $C=\left[\begin{matrix}(x+2)^2&5x^2&2x\5x^2&2x&(x+2)^2\2x&(x+2)^2&5x^2\end{matrix}\right]$

$tr(C)=(x+2)^2+2x+5x^{2}$
$\Rightarrow tr(C)=6x^{2}+6x+4$

Since, we have $tr(AB)=tr(C)$
$\Rightarrow 3ax^{2}+b+6cx=6x^{2}+6x+4$

On comparing, we get $a=2,b=4,c=1$
So, $a+b+c=7$

If $f(x,y) = x^2 + y^2 - 2xy, \space (x,y \in R)$ and 
$\quad A = \begin{bmatrix}f(x _1,y _1) & f(x _1,y _2) & f(x _1,y _3) \ f(x _2,y _1) & f(x _2,y _2) & f(x _2,y _3) \ f(x _3,y _1) & f(x _3,y _2) & f(x _3,y _3) \end{bmatrix}$ 
such that trace $(A) = 0$, then which of the following is true (only one option)

  1. $det(A) \ge 0$

  2. $det(A) = 0$

  3. $det(A) \le 0$

  4. $det(A) > 0$


Correct Option: A
Explanation:

$f(x,y) = x^2 + y^2 - 2xy, \space (x,y \in R)$ and
$\quad A = \begin{bmatrix}f(x _1,y _1) & f(x _1,y _2) & f(x _1,y _3) \ f(x _2,y _1) & f(x _2,y _2) & f(x _2,y _3) \ f(x _3,y _1) & f(x _3,y _2) & f(x _3,y _3) \end{bmatrix}$ such that trace $(A) = 0$
$\Rightarrow A=\begin{bmatrix} (x _{ 1 }-y _{ 1 })^{ 2 } & \quad (x _{ 1 }-y _{ 2 })^{ 2 } & \quad (x _{ 1 }-y _{ 3 })^{ 2 } \ (x _{ 2 }-y _{ 1 })^{ 2 } & \quad (x _{ 2 }-y _{ 2 })^{ 2 } & \quad (x _{ 2 }-y _{ 3 })^{ 2 } \ (x _{ 3 }-y _{ 1 })^{ 2 } & \quad (x _{ 3 }-y _{ 2 })^{ 2 } & \quad (x _{ 3 }-y _{ 3 })^{ 2 } \end{bmatrix}$
Trace$(A)=0$
$\Rightarrow (x _1-y _1)^2+(x _2-y _2)^2+(x _3-y _3)^2=0$
$\Rightarrow x _1=y _1; x _2=y _2; x _3=y _3$
$A=\begin{bmatrix} 0 & \quad (y _{ 1 }-y _{ 2 })^{ 2 } & \quad (y _{ 1 }-y _{ 3 })^{ 2 } \ (y _{ 2 }-y _{ 1 })^{ 2 } & 0 & \quad (y _{ 2 }-y _{ 3 })^{ 2 } \ (y _{ 3 }-y _{ 1 })^{ 2 } & \quad (y _{ 3 }-y _{ 2 })^{ 2 } & 0 \end{bmatrix}$
$|A|=2(y _1-y _2)^2(y _2-y _3)^2(y _3-y _1)^2\geq 0$
$\therefore |A|\geq 0$
Hence, option A.

Let three matrices A = $\begin{bmatrix} 2& 1\ 4 & 1\end{bmatrix}; B=\begin{bmatrix} 3&4 \ 2 &3 \end{bmatrix} \,\, and \,\, C = \begin{bmatrix}3 &-4 \  -2& 3\end{bmatrix}$ then 
$t _r(A)+t _r\left ( \frac{ABC}{2} \right )+t _r\left ( \frac{A(BC)^2}{4} \right )+t _r\left ( \frac{A(BC)^3}{8} \right )+....+\infty $

  1. 6

  2. 9

  3. 12

  4. none of these


Correct Option: A
Explanation:
Let $S=t _r(A)+t _r\left ( \frac{ABC}{2} \right )+t _r\left ( \frac{A(BC)^2}{4} \right )+t _r\left ( \frac{A(BC)^3}{8} \right )+....+\infty $

$BC=\begin{bmatrix} 3& 4\\ 2 & 3\end{bmatrix} \begin{bmatrix} 3 & -4 \\-2 & -3 \end{bmatrix} = \begin{bmatrix}1& 0\\ 0 & 1\end{bmatrix}$ 

$\therefore \displaystyle S=t _r(A)+t _r\left ( \frac{A}{2} \right )+t _r\left ( \frac{A}{4} \right ) +....\infty $ 

$t _r(A)=2+1=3$

$\displaystyle S=3+\frac{3}{2}+\frac{3}{4}+....\infty$

The sum of infinite terms of a GP series is $S _\infty= \dfrac{a}{(1-r)}$

$ S=3 \left(\dfrac{1}{1-\dfrac{1}{2}}\right)=6$
- Hide questions