0

Angle between a line and a plane - class-XII

Description: angle between a line and a plane
Number of Questions: 35
Created by:
Tags: applications of vector algebra three dimensional geometry - ii maths product of vectors
Attempted 0/35 Correct 0 Score 0

The angle between the line $\dfrac{x-1}{1}=\dfrac{y+2}{1}=\dfrac{z-4}{0}$ and the plane $y+z+2=0$ is

  1. $\dfrac{\pi}{3}$

  2. $\dfrac{\pi}{4}$

  3. $\dfrac{\pi}{6}$

  4. $\dfrac{\pi}{2}$


Correct Option: A
Explanation:

$\text cos\theta = \dfrac{1.0+1.1+0.1}{(√(1^{2}+1^{2}+0^{2}).(√0^{2}+1^{2}+1^{2})}$

$\text cos\theta = \dfrac{1}{√2.√2}$
$\text cos\theta = \dfrac{1}{2}$
$\theta = \dfrac{π}{3}$

The angle between the line $\dfrac{x}{2} = \dfrac{y}{3} = \dfrac{z}{4}$ and the plane $3x + 2y - 3z = 4$, is

  1. $45^o$

  2. $0^o$

  3. $\cos^{-1} \left(\dfrac{24}{\sqrt{29 \times 22}}\right)$

  4. $90^o$


Correct Option: B
Explanation:

Line$:\cfrac { x }{ 2 } =\cfrac { y }{ 3 } =\cfrac { z }{ 4 } $ has directions $(2,3,4)$

Plane$:3x+2y-3z=4$ has normal with direction ratios $(3,2,-3)$
$\therefore$ angle between plane and line be $\theta$ then angle between line and its direction will be $90-\theta$.
$\cos { (90-\theta ) } =\cfrac { 2\times 3+3\times 2+4\times -3 }{ \sqrt { ({ 2 }^{ 2 }+{ 3 }^{ 2 }+{ 4 }^{ 2 })({ 3 }^{ 2 }+{ 2 }^{ 2 }+{ 3 }^{ 2 }) }  } =0\ \therefore 90-\theta =90\quad \Rightarrow \theta ={ 0 }^{ \circ  }$

The projection of the line segment joining the points $(1, 2, 3)$ and $(4, 5, 6)$ on the plane $2x + y + z = 1$ is 

  1. $1$

  2. $\sqrt{3}$

  3. $5$

  4. $6$


Correct Option: B
Explanation:

Points $A(1,2,3)$ and $B(4,5,6)$ ,  Plane :$2x+y+z=1$

length of projection is distance between foot of perpendicular of $A$ & $B$ on Plane.
Directions of normal to plane $\Rightarrow 2,1,1$
let $(2r+1,r+2,r+3)$ is foot of $\bot$ from $A(1,2,3)$.
$(2r+1)2+(r+2)+(r+3)=1\ \Rightarrow r=-1$
foot of $\bot$ from $A=(-1,1,2)$
Similarly,If $(2k+4,k+5,k+6)$ is foot of $\bot$ from $B(4,5,6)$
$\therefore (2k+1)2+(k+5)+(k+6)=1\ \Rightarrow k=-3$
foot of $\bot$ from $B=(-2,2,3)$
$\therefore$ distance between foot of $\bot$ from $A$ & foot of $\bot$ from $B$.
$\Rightarrow \sqrt { { (-2-(-1)) }^{ 2 }+{ (2-1) }^{ 2 }+{ (3-2) }^{ 2 } } =\sqrt { 3 } $

If $\overline {c}$ is perpendicular to $\overline {a}$ and $\overline {b}$ , $\left| \overline {a} \right| =3,\ \left| \overline {b} \right|=4,\ \left| \overline {c} \right|=5$ and the angle between $\overline {a}$ and $\overline {b}$ is $\dfrac{\pi}{6}$ then $[\overline {a}\ \ \ \overline {b}\ \ \ \overline {c}]=$

  1. $30\sqrt{3}$

  2. $30$

  3. $15$

  4. $15\sqrt{3}$


Correct Option: B
Explanation:

We have,

$\begin{matrix} \left[ { \overline { a } \, \, \overline { b } \, \, \overline { c }  } \right] =\overline { c } \times \left( { \overline { a } \times \overline { b }  } \right)  \ =\overline { c } \times \left( { \overline { a } \times \overline { b }  } \right) \cos { 0^{ 0 } }  \ =5\times 3\times 4\times \sin  \frac { \pi  }{ 6 }  \  \end{matrix}$
$ = 5 \times 3 \times 4 \times \frac{1}{2}$
$ = 30$
Then,
Option $B$ is correct answer.

An angle between the plane , $x+y+z=5$ and the line of intersection of the planes, $3x+4y+x-1=0$ and $5x+8y+2z+14=0$

  1. $\sin^{-1}(\sqrt{3/17})$

  2. $\cos^{-1}(\sqrt{3/17})$

  3. $\cos^{-1}(3/\sqrt{17})$

  4. $\sin^{-1}(3/\sqrt{17})$


Correct Option: A
Explanation:

We have

$\overrightarrow {{\pi _1}} :x + y + z = 5$
$\overrightarrow {{r _1}} :3x + 4y + z - 1 = 0$
$\overrightarrow {{r _2}} :5x + 8y + 2z + 14 = 0$
Line of intersection of planes $\parallel \,\,to\,\,\overrightarrow {{r _1}}  \times \overrightarrow {{r _1}} $
By the helps of determinate
$\left| { \begin{array} { *{ 20 }{ c } }{ \widehat { i }  } & { \widehat { j }  } & { \widehat { k }  } \ 3 & 4 & 1 \ 4 & 8 & 2 \end{array} } \right| $
$ = \widehat i\left( 0 \right) - \widehat j\left( {6 - 5} \right) + \widehat k\left( {24 - 20} \right)$
$ =  - \widehat j + 4\widehat k$
Now,
$\sin \theta  = \frac{{ - 1 + 4}}{{\sqrt 3 \sqrt {17} }} = \sqrt {\frac{3}{{17}}} $
$\therefore \theta  = {\sin ^{ - 1}}\sqrt {\frac{3}{{17}}} $
Hence the option $A$ is the correct answer.

Read the following statement carefully and identify the true statement
(a) Two lines parallel to a third line are parallel
(b) Two lines perpendicular to a third line are parallel
(c) Two lines parallel to a plane are parallel
(d) Two lines perpendicular to a plane are parallel
(e) Two lines either intersect or are parallel

  1. a & b

  2. a & d

  3. d & e

  4. a


Correct Option: B,D
Explanation:
$(a)$ Two lines parallel to a third line are parallel-True

$(b)$ Two lines perpendicular to a third line are parallel-False. 

The $x-$ and $y-$axes are both perpendicular to the $z-$axis, yet the $x-$ and $y-$axes are not parallel.

$(c)$ Two lines parallel to a plane are parallel-False. 

The $x-$ and $y-$axes are not parallel, yet they are both parallel to the plane $z = 1.$

$(d)$ Two lines perpendicular to a plane are parallel-True

$(e)$ Two lines either intersect or are parallel-False. They can be skew.
Only the statements $(a)$ and $(d)$ are true.

The line $\dfrac {x - 2}{3} = \dfrac {y - 3}{4} = \dfrac {z - 4}{5}$ is parallel to the plane.

  1. $3x + 4y + 5z = 7$

  2. $2x + y - 2z=0$

  3. $x + y - z = 2$

  4. $2x + 3y$


Correct Option: B
Explanation:

Direction ratios of given line are $3,4,5$ direction ratios of the perpendicular to the  plane $2x+y-2z=0$ are $2,1,-2$


Now
$\begin{array}{l} 2\times 3+1\times 4+\left( { -2 } \right) \times 5 \ =6+4-10 \ =0 \end{array}$

perpendicular to the plane is perpendicular to the given line
so, the plane $2x+y-2z$ is parallel to the given line.

Hence, the correct option is $B$

If the projection of point P$(\vec{p})$ on the plane $\vec{r}\cdot \vec{n}=q$ is the points $S(\vec{s})$, then.

  1. $\vec{s}=\dfrac{(q-\vec{p}\cdot \vec{n})\vec{n}}{|\vec{n}|^2}$

  2. $\vec{s}=\vec{p}+\dfrac{(q-\vec{p}\cdot \vec{n})\vec{n}}{|\vec{n}|^2}$

  3. $\vec{s}=\vec{p}-\dfrac{(\vec{p}\cdot \vec{n})\vec{n}}{|\vec{n}|^2}$

  4. $\vec{s}=\vec{p}-\dfrac{(\vec{q}-\vec{p}\cdot \vec{n})\vec{n}}{|\vec{n}|^2}$


Correct Option: B
Explanation:

Consider the problem 

Let,
$\pi : \vec r.\vec n=q$ be the plane.
Now $S$ will lie on $\pi $. 
Consider $\vec S$ will joins $O(0,0,0)$ and  $S$. And as $P$ is projection on plane, 
then 
$\vec {PS}$ is perpendicular to plane.

$\vec P=\vec {OP}$
Now In triangle $OSP$, by triangle law of vector addition.

$\vec {OS}+\vec {SP}=\vec {OP}$  

$|\vec {SP}|=$ distance between $P$ and plane 
$=\dfrac{\vec p.\vec n-q}{|\vec n|}$

$\vec {SP}=|\vec {SP}|.\hat {SP}$

Now, 
$\hat {SP}=\hat n=\dfrac{\vec n}{|\vec n|}$

$\vec {SP}=\dfrac{|\vec {SP}|\vec n}{|\vec n|}$

$\vec {SP}=\dfrac{(\vec p.\vec n-q)\vec n}{|\vec n|^2}$

$\vec {OS}+\vec {OP}=\vec {OP}$
$\vec S+\vec {SP}=\vec P$

$\vec S=\vec p-\vec {SP}$
$=\vec p-(\dfrac{\vec p.\vec n-q}{|\vec n|^2})\vec n$

$\vec S=\vec p+\dfrac{(q-\vec p.\vec n)\vec n}{|\vec n|^2}$

The line $\cfrac{x+3}{3}=\cfrac{y-2}{-2}=\cfrac{z+1}{1}$ and the plane $4x+5y+3z-5=0$ intersect at a point

  1. $(3,1,-2)$

  2. $(3,-2,1)$

  3. $(2,-1,3)$

  4. $(-1,-2,-3)$


Correct Option: B
Explanation:

Let $\dfrac{x+3}{3}=\dfrac{y-2}{-2}=\dfrac{z+1}{1}=k$


On solving, we get

$\Rightarrow x=3k-3$

$\Rightarrow y=-2k+2$ 

$\Rightarrow z=k-1$

On substituing these values in the given plane equation we get,

$\Rightarrow 4x+5y+3z-5=0$

$\Rightarrow 4(3k-3)+5(-2k+2)+3(k-1)-5=0$

On simpliying we get,

$\Rightarrow 5k=10$

$\Rightarrow k=2$

Substituting this value of $k$ in equations of $x,y,z$ we get

$\Rightarrow x=3,y=-2,z=1$

Hence point of intersection is $(3,-2,1)$

If $a,b$ and $c$ are three unit vectors equally inclined to each other at angle $\theta$. Then, angle between $a$ and the plane of $b$ and $c$ is

  1. $\cos ^{ -1 }{ \left( \cfrac { \cos { \theta } }{ \cos { \left( \theta /2 \right) } } \right) } $

  2. $\sin ^{ -1 }{ \left( \cfrac { \sin { \theta } }{ \sin { \left( \theta /2 \right) } } \right) } $

  3. $\sin ^{ -1 }{ \left( \cfrac { \cos { \theta } }{ \cos { \left( \theta /2 \right) } } \right) } $

  4. $\cos ^{ -1 }{ \left( \cfrac { \sin { \theta } }{ \sin { \left( \theta /2 \right) } } \right) } $


Correct Option: A

If the line $\cfrac{x-1}{2}=\cfrac{y+3}{1}=\cfrac{z-5}{-1}$ is parallel to the plane $px+3y-z+5=0$, then the value of $p$

  1. $2$

  2. $-2$

  3. $\cfrac{1}{2}$

  4. $\cfrac{1}{3}$


Correct Option: B
Explanation:
line $11$ plane 
$\therefore$ line $\bot$ normal to plane 
$\therefore (2)(P)+(1)(3)+(-1)(-1)=0$  
$\therefore 2p + 3 + 1 =0$
$\therefore P=-2$

The angle between the plane $2 x - y + z = 6$ and a perpendiculars to the planes $x + y + 2 z = 7$ and $x - y = 3$ is

  1. $\frac { \pi } { 4 }$

  2. $\frac { \pi } { 3 }$

  3. $\frac { \pi } { 6 }$

  4. $\frac { \pi } { 2 }$


Correct Option: D

Statement 1: Line $\dfrac {x-1}{1}=\dfrac {y-0}{2}=\dfrac {z+2}{-1}$ lies in the plane $2x-3y-4z-10=0$.
Statement 2: If line $\vec r=\vec a+\lambda \vec b$ lies in the planar $\vec r\cdot \vec c=n$ (where n is scalar), then $\vec b\cdot \vec c=0$.

  1. Both the statements are true, and Statement 2 is the correct explanation for Statement 1.

  2. Both the statements are true, but Statement 2 is not the correct explanation for Statement 1.

  3. Statement 1 is true and Statement 2 is false.

  4. Statement 1 is false and Statement 2 is true.


Correct Option: A
Explanation:

If line $\vec r=\vec a+\lambda \vec b$ lies in the planar $\vec r\cdot \vec c=n$ (where n is scalar), then $\vec b\cdot \vec c=0$ &  $\vec a\cdot \vec c=n$
Therefore, statement 2 is true.
Since, line $\dfrac {x-1}{1}=\dfrac {y-0}{2}=\dfrac {z+2}{-1}$ lies in the plane $2x-3y-4z-10=0$
Then, $2(1)-3(0)-4(-2)-10=0$
          $\Rightarrow 0=0$
and $(i+2j-k).(2i-3j-4k)=0$
       $\Rightarrow 2-6+4=0$
       $\Rightarrow 0=0$
Therefore, statement 1 is true.

Ans: A

If $\theta$ denotes the acute angle between the line $\bar{r} = (\bar{i} + 2\bar{j} - \bar{k}) + \lambda  (\bar{i} - \bar{j} + \bar{k})$ and the plane $\bar{r} = (2\bar{i} - \bar{j} + \bar{k}) = 4$, then $\sin \theta + \sqrt 2 \cos \theta$

  1. $\dfrac{1}{\sqrt 2}$

  2. $1$

  3. $\sqrt 2$

  4. $1 + \sqrt 2$


Correct Option: A

Let $\vec {AB}=\hat {i}-\hat {j}+\hat {k}$ be rotated about $A$ along the plane $3x-y-2z=5$ by an angle $\cos^{-1}\dfrac {\sqrt {2}}{3}$ so that the point $B$ reaches the point $C$, then the vector representing $AC$ may be

  1. $\dfrac {\sqrt {3}(-2\hat {j}+\hat {k})}{\sqrt {5}}$

  2. $\dfrac {\hat {i}-\hat {j}+2\hat {k}}{\sqrt {2}}$

  3. $\dfrac {\sqrt {3}(\hat {i}+3\hat {j})}{\sqrt {10}}$

  4. $\dfrac {\hat {i}-7\hat {j}+2\hat {k}}{3\sqrt {2}}$


Correct Option: A

Gives the line $\displaystyle L:\frac { x-1 }{ 3 } =\frac { y+1 }{ 2 } =\frac { z-3 }{ -1 } $ and the plane $\pi :x-2y=0$. Of the following assertions, the only one that is always true is:

  1. $L$ is $\bot$ to $\pi$

  2. $L$ lies in $\pi$

  3. $L$ is parallel to $\pi$

  4. none of these


Correct Option: B
Explanation:

Since $3\left( 1 \right) +2\left( -2 \right) +\left( -1 \right) \left( -1 \right) =3-4+1=0$

$\therefore$ given line is $\bot$ to the normal to the plane i.e. given line is parallel to the given plane.
Also, $(1,-1,3)$ lies on the plane $x-2y-z=0$
$1-2\left( -1 \right) -3=0\Rightarrow 1+2-3=0$
which is true
$\therefore L$ lies in plane $\pi$

Consider a plane $x + y - z = 1$ and the point $A(1, 2, -3)$. A line $L$ has the equation $x = 1 + 3r$, $y = 2 - r$, $z = 3 + 4r$

The coordinate of a point $B$ of line $L$, such that $AB$ is parallel to the plane, is

  1. $(10, -1, 15)$

  2. $(-5, 4, -5)$

  3. $(4, 1, 7)$

  4. $(-8, 5, -9)$


Correct Option: D
Explanation:

Let $\vec { OB } =\left( 1+3r \right)\hat i+\left( 2-r \right)\hat j+\left( 3+4r \right)\hat k$
$\vec { AB } =\vec { OB } -\vec { OA } =\left( 1+3r \right)\hat i+\left( 2-r \right)\hat j+\left( 3+4r \right)\hat k-\hat i-2\hat j+3\hat k=3r\hat i-r\hat j+\left( 6+4r \right)\hat k$
Since, $\vec { AB }$ is parallel to $x+y-z=1$
Therefore, $\vec { AB } .\left(\hat i+\hat j-\hat k \right) =0$
$\Rightarrow \left( 3r\hat i-r\hat j+\left( 6+4r \right)\hat k \right) .\left(\hat i+\hat j-\hat k \right)=0 $
$\Rightarrow 3r-r-6-4r=0$
$\Rightarrow r=-3$
Therefore, $\vec { OB } =-8i+5j-9k$

Ans: D

If the angle between the line $x=\dfrac{y-1}{2}=\dfrac{z-3}{\lambda}$ and the plane $x+2y+3z=4$ is $\cos ^{ -1 }{ \left( \sqrt { 5/14 }  \right)  } $ then $\lambda$=

  1. $\dfrac{3}{2}$

  2. $\dfrac{5}{3}$

  3. $\dfrac{2}{3}$

  4. $\dfrac{2}{5}$


Correct Option: A

Consider plane containing line $\dfrac{x+1}{-3} = \dfrac{y-3}{z} = \dfrac{z+2}{-1}$ and passing through the point $(1, -1, 0)$. The angle made by the plane with x-axis is

  1. $tan^{-1} \sqrt{2}$

  2. $tan^{-1} \sqrt{2}$

  3. $\dfrac{\pi}{6}$

  4. none of these


Correct Option: A

Consider plane containing line $\dfrac{x+1}{-3} = \dfrac{y-3}{2} = \dfrac{z+2}{-1}$ and passing through the point $(1, -1, 0)$ . The angle made by the plane with x-axis is 

  1. $tan^{-1} \sqrt{2}$

  2. $cot^{-1} \sqrt{2}$

  3. $\dfrac{\pi}{6}$

  4. none of these


Correct Option: A

If the plane $2x-3y+6z-11=0$ makes an angle $\sin^{-1}(k)$ with x-axis, then $k$ is equal to:

  1. $\cfrac {\sqrt{3}}{2}$

  2. $\dfrac 27$

  3. $\dfrac {\sqrt{2}}{3}$

  4. $1$


Correct Option: B
Explanation:

Given plane is $2x−3y+6z−11=0$


We know $\sin\theta=\dfrac {\vec b . \vec n}{|\vec b| |\vec n|}$


Here $\vec n$ is the normal vector to the plane

$\vec n= 2\vec i -3 \vec j+6\vec k$

and $\vec b $ is along x axis

$\therefore \sin\theta=\dfrac {(2\vec i-3\vec j+6\vec k).\vec i}{{\sqrt{2^2+(-3)^2+6^2\sqrt12}}}$

$\therefore \dfrac{2}{\sqrt49}=\dfrac{2}{7}$

Hence, B is correct option

The angle between the line $\displaystyle x = y = z$ and the plane $\displaystyle 4x - 3y + 5z = 2$ is

  1. $\displaystyle \cos^{-1} \frac{\sqrt{6}}{5}$

  2. $\displaystyle \sin ^{-1} \frac{\sqrt{6}}{5}$

  3. $\displaystyle \frac{\pi }{2}$

  4. $\displaystyle \sin ^{-1} \frac{1}{\sqrt{6}}$


Correct Option: B
Explanation:

Direction ratios of $x=y=z$ are $(1,1,1)$....(1)

Let angle between the above line and $4x -3y+5z=2$ is $ \theta$.

$ \Rightarrow $ angle between the line and normal to the plane is $90^{o} - \theta$...(2)

Direction ratios of normal to the given plane are $(4, -3, 5)$....(3)

From (1), (2) and (3), $ \cos {(90^{o}- \theta)}=\dfrac{1 \times 4 + 1 \times (-3)+ 1 \times 5}{\sqrt{1^2+1^2+1^2}{ \sqrt {4^2+3^2+5^2}}}=\dfrac{6}{\sqrt{3} \times 5 \times \sqrt{2}}$

$ \Rightarrow \sin {\theta}= \dfrac{\sqrt{6}}{5} $

$\Rightarrow \theta = \sin^{-1}{\dfrac{\sqrt{6}}{5}}$

Given the line $\displaystyle L:\frac { x-1 }{ 3 } =\frac { y+1 }{ 2 } =\frac { z-3 }{ -1 } $ and the plane $\pi :x-2y=0$. Of the following assertion, the only one that is always true is

  1. $L$ is $\bot$ to $\pi$

  2. $L$ lies in $\pi$

  3. $L$ is parallel to $\pi$

  4. None of these


Correct Option: B
Explanation:

Since $3\left( 1 \right) +2\left( -2 \right) +\left( -1 \right) \left( -1 \right) =3-4+1=0,$
$\therefore$ given line is $\bot $ to the normal to the plane i.e., given line is parallel to the given plane.
Also $\left( 1,-1,3 \right) $ lies on the plane $x-2y-z=0$, if $1-2\left( -1 \right) -3=0$ i.e., $1+2-3=0$
which is true 

$\therefore L$ lies in plane $\pi .$

The angle between the line $\overrightarrow { r } =\left( -\hat { i } +3\hat { j } +3\hat { k }  \right) +t\left( 2\hat { i } +3\hat { j } +6\hat { k }  \right) $ and the plane $\overrightarrow { r } .\left( -\hat { i } +\hat { j } +\hat { k }  \right) $ is
  1. $\displaystyle\sin ^{ -1 }{ \dfrac { 1 }{ \sqrt { 3 }  }  } $

  2. $\displaystyle\sin ^{ -1 }{ \dfrac { 1 }{ \sqrt { 2 }  }  } $

  3. $\displaystyle\sin ^{ -1 }{ \dfrac { 2 }{ \sqrt { 3 }  }  } $

  4. $\displaystyle\sin ^{ -1 }{ \dfrac { 3 }{ \sqrt { 2 }  }  } $


Correct Option: A
Explanation:
Angle between the line and the plane is given by
$\displaystyle \sin { \theta  } =\dfrac { \left( 2\hat { i } +3\hat { j } +6\hat { k }  \right) .\left( -\hat { i } +\hat { j } +\hat { k }  \right)  }{ \sqrt { 4+9+36 } \sqrt { 1+1+1 }  } $
$\displaystyle =\dfrac { -2+3+6 }{ 7\times \sqrt { 3 }  } =\dfrac { 7 }{ 7\sqrt { 3 }  } =\dfrac { 1 }{ 3 } $
$\displaystyle \Rightarrow \theta =\sin ^{ -1 }{ \left( \dfrac { 1 }{ \sqrt { 3 }  }  \right)  } $

If the plane $2x - 3y + 6z - 11 = 0$ makes an angle $sin^{-1}(k)$ with x-axis, then k is equal to

  1. $\displaystyle \frac{\sqrt{3}}{2}$

  2. $\displaystyle \frac{2}{7}$

  3. $\displaystyle \frac{\sqrt{2}}{7}$

  4. $1$


Correct Option: B
Explanation:

Given plane is $2x−3y+6z−11=0$

We know $sinθ= \dfrac {\vec b. \vec n}{| \vec b|| \vec n|}$
Here $\vec n$  is the normal vector to the plane
$\vec n =2\vec i-3\vec j +6\vec k$
and  $\vec b $  is along x axis.

$\therefore  sin\theta=\dfrac{(2\vec i-3\vec j +6\vec k).\vec i}{\sqrt {2^2+(-3)^2+6^2.}\sqrt12}$

$\therefore \dfrac{2}{\sqrt49}=\dfrac{2}{7}$.

Given the line $L:\displaystyle\frac{x-1}{3}=\frac{y+1}{2}=\frac{z-3}{-1}$ and the plane II:$x-2y-z=0$. Of the following assertions, the only one that is always true, is?

  1. L is $\perp$ to II

  2. L lies in II

  3. L is parallel to II

  4. None of these


Correct Option: C
Explanation:
$(1,-1,3)$ does not lie on the plane. Hence, $L$ cannot lie in the plane. 
The direction vector of line $L$ is $\vec{v}=3\hat{i}+2\hat{j}-\hat{k}$.
The normal vector of plane is $\vec{n}=\hat{i}-2\hat{j}-\hat{k}$.
Now, $\vec{n}\cdot\vec{v}=3-4+1=0$  
Hence, $\vec{n}$ and $\vec{v}$ are perpendicular and the plane and line cannot be perpendicular but are parallel.

Plane $2x+3y+6z=15=0$ makes angle of measure ________ with Y-axis.

  1. $\sin^{-1}\left(\dfrac{3}{7}\right)$

  2. $\sin^{-1}\left(\dfrac{2}{7}\right)$

  3. $\sin^{-1}\left(\dfrac{2}{\sqrt{7}}\right)$

  4. $\cos^{-1}\left(\dfrac{3}{7}\right)$


Correct Option: A
Explanation:

Direction of line $\bar{l}=(0, 1, 0)$
$\bar{n}=$ Normal of plane $=(2, 3, 6)$
$\therefore \alpha =$ Angle between line and plane.
$\therefore \sin\alpha =\left|\dfrac{\bar{l}\cdot \bar{n}}{|\bar{l}||\bar{n}|}\right|$
$=\dfrac{0(2)+1(3)+0(6)}{(1)\sqrt{4+4+36}}$
$=\dfrac{0+3+0}{\sqrt{49}}$
$=\dfrac{3}{7}$
$\therefore$ Measure of an angle between line and plane $\alpha =\sin^{-1}\left(\dfrac{3}{7}\right)$.

If the angle bwteen a line $x=\dfrac{y-1}{2}=\dfrac{z-3}{\lambda}$ and normal to the plane $x+2y+3z=4$ is $\cos^{-1}{\sqrt{\dfrac{5}{14}}}$, then possible value(s) of $\lambda$ is/are

  1. $\dfrac{5}{2}$

  2. $\dfrac{2}{5}$

  3. 00

  4. $\dfrac{2}{3}$


Correct Option: A
Explanation:

Consider the given line equation $x=\dfrac{y-1}{2}=\dfrac{z-3}{\lambda }$ and plane equation$x+2y+3z=4$.

Let $\theta $ be the angle between the line and normal to plane converting the given equations into normal form, we have

  $ \overrightarrow{r}=0.\widehat{i}+\widehat{j}+3\widehat{k}+\beta \left( \widehat{i}+2\widehat{j}+\lambda \widehat{k} \right) $

 $ \overrightarrow{r}=\widehat{i}+2\widehat{j}+3.\widehat{k}=3 $

Now,

  $ \overrightarrow{b}=\left( \widehat{i}+2\widehat{j}+\lambda \widehat{k} \right) $

 $ \overrightarrow{n}=\widehat{i}+2\widehat{j}+3.\widehat{k}=3 $

We know that,

  $ \cos \theta =\left| \dfrac{\widehat{b}.\widehat{n}}{\left| \widehat{b} \right|\left| \widehat{n} \right|} \right| $

 $ =\left| \dfrac{\left( \widehat{i}+2\widehat{j}+\lambda \widehat{k} \right).\left( \widehat{i}+2\widehat{j}+3.\widehat{k} \right)}{\left| \widehat{i}+2\widehat{j}+\lambda \widehat{k} \right|\left| \widehat{i}+2\widehat{j}+3.\widehat{k} \right|} \right| $

 $ \cos \theta =\left| \dfrac{1+4+3\lambda }{\sqrt{{{1}^{2}}+{{2}^{2}}+{{\lambda }^{2}}}\sqrt{{{1}^{2}}+{{2}^{2}}+{{3}^{2}}}} \right|=\left| \dfrac{5+\lambda }{\sqrt{5+{{\lambda }^{2}}}\sqrt{14}} \right| $

But given that $\theta ={{\cos }^{-1}}\left( \sqrt{\dfrac{5}{14}} \right)$ ,so

  $ \cos {{\cos }^{-1}}\sqrt{\dfrac{5}{14}}=\left| \dfrac{5+\lambda }{\sqrt{5+{{\lambda }^{2}}}\sqrt{14}} \right| $

 $ \sqrt{\dfrac{5}{14}}=\left| \dfrac{5+\lambda }{\sqrt{5+{{\lambda }^{2}}}\sqrt{14}} \right| $

Taking square both sides ,we get

  $ \dfrac{5}{14}={{\left| \dfrac{5+\lambda }{\sqrt{5+{{\lambda }^{2}}}\sqrt{14}} \right|}^{2}}=\dfrac{{{\left( 5+\lambda  \right)}^{2}}}{\left( 5+{{\lambda }^{2}} \right)\left( 14 \right)} $

 $ \dfrac{{{\left( 5+\lambda  \right)}^{2}}}{\left( 5+{{\lambda }^{2}} \right)}=5 $

 $ 25+{{\lambda }^{2}}+10\lambda =25+5{{\lambda }^{2}} $

 $ 4{{\lambda }^{2}}-10\lambda =0 $

 $ 2\lambda \left( 2\lambda -5 \right)=0 $

 $ \lambda \left( 2\lambda -5 \right)=0 $

 $ \lambda =0,\lambda =\dfrac{5}{2} $

Ignore $\lambda =0$ as it is in denominator. Therefore,

$\lambda =\dfrac{5}{2}$

This is the answer .

If the angle between the line $x=\dfrac { y-1 }{ 2 } =\dfrac { z-3 }{ \lambda}$ and the plane $x+2y+3z=4$ is $\cos ^{ -1 }{ \sqrt { \dfrac { 5 }{ 14 }  }   },$ then $\lambda$ equals:

  1. $\dfrac { 2 }{ 5 } $

  2. $\dfrac { 5 }{ 3 } $

  3. $\dfrac { 2 }{ 3 } $

  4. $\dfrac { 3 }{ 2 } $


Correct Option: C
Explanation:
Line : $\dfrac{x}{1} = \dfrac{y - 1}{2} = \dfrac{z - 3}{\lambda}$
and the plane $x + 2y + 3z = 4$
$\therefore \sin\theta = \dfrac{1 + 4 + 3\lambda}{\sqrt{1 + 4 + \lambda^2}\sqrt{1 + 4 + 9}}$
$= \dfrac{5 + 3\lambda}{\sqrt{5 + \lambda^2}\sqrt{14}}$
$cos^{-1} \sqrt{\dfrac{5}{14}} = sin^{-1}\dfrac{3}{\sqrt{14}}$
$\Rightarrow \dfrac{3}{\sqrt{14}} = \dfrac{5 + 3\lambda}{\sqrt{5 + \lambda^2}
\sqrt{14}}$
$\Rightarrow 9(5 + \lambda^2) = (5 + 3\lambda)^2$
$\Rightarrow 45 + 9\lambda^2 = 25 + 9\lambda^2 + 30\lambda$
$\Rightarrow \lambda = \dfrac{2}{3}$

If the angle between the line $x=\cfrac{y-1}{2}=\cfrac{z-3}{\lambda}$ and the plane $x+2y+3z=4$ is $\cos ^{ -1 }{ \left( \sqrt { \cfrac { 5 }{ 14 }  }  \right)  } $, then $\lambda$ equals:

  1. $2/5$

  2. $5/3$

  3. $2/3$

  4. $3/2$


Correct Option: C
Explanation:
Angle between line and normal to plane would be $\cfrac { \pi  }{ 2 } -\cos ^{ -1 }{ \sqrt { \cfrac { 5 }{ 14 }  }  } =\sin ^{ -1 }{ \sqrt { \cfrac { 5 }{ 14 }  }  } =\cos ^{ -1 }{ \cfrac { 3 }{ \sqrt { 14 }  }  } $
$\Rightarrow \cfrac { \left( \hat { i } +2\hat { j } +\lambda \hat { k }  \right) .\left( \hat { i } +2\hat { j } +3\hat { k }  \right)  }{ \left| \hat { i } +2\hat { j } +\lambda \hat { k }  \right| \left| \hat { i } +2\hat { j } +3\hat { k }  \right|  } =\cfrac { 3 }{ \sqrt { 14 }  } $
$\Rightarrow \cfrac { 1+4+3\lambda  }{ \sqrt { 5+{ \lambda  }^{ 2 } } \sqrt { 1+4+9 }  } =\cfrac { 3 }{ \sqrt { 14 }  } $
$\Rightarrow 3\lambda +5=3\sqrt { 5+{ \lambda  }^{ 2 } } \Rightarrow { \left( 3\lambda +5 \right)  }^{ 2 }=9\left( { \lambda  }^{ 2 }+5 \right) $
$\Rightarrow 9{ \lambda  }^{ 2 }+25+30\lambda =9{ \lambda  }^{ 2 }+45\Rightarrow 30\lambda =20\Rightarrow \lambda =\cfrac { 2 }{ 3 } $

If the angle between the line $x=\cfrac{y-1}{2}=\cfrac{z-3}{\lambda}$ and the plane $x+2y+3z=4$ is $\cos ^{ -1 }{ \left( \sqrt { \cfrac { 5 }{ 14 }  }  \right)  } $, then $\lambda$ equals

  1. $\cfrac{15}{2}$

  2. $\cfrac{3}{2}$

  3. $\cfrac{2}{5}$

  4. $\cfrac{5}{3}$


Correct Option: A
Explanation:

equation of line $\dfrac{x-0}{1}=\dfrac{y-1}{2}=\dfrac{2-3}{\lambda}$ where $a _1=1, a _2=2, a _3=\lambda$

equation of plane $n+2y+32=4$
where $b _1=1, b _2=2, b _3=3$
angle between Line and plane
$\cos\theta=\dfrac{|a _1b _1+a _2b _2+a _3b _3|}{\sqrt{a _1^2+a _2^2+a _3^2}.\sqrt{b _1^2+b _2^2+b _3^2}}$
$\cos \theta=\dfrac{|1.1+2.2+3.\lambda|}{\sqrt{1+4+\lambda^2}.\sqrt{1+4+9}}$
$\cos \theta =\dfrac{5+3\lambda}{\sqrt{5+\lambda^2}.\sqrt{14}}\quad ---(1)$
given $\theta =\cos^{-1}\left(\sqrt{\dfrac{5}{14}}\right)$
$\cos \theta =\left(\sqrt{\dfrac{5}{14}}\right)\quad ----(2)$
By eqn $(1)$ & $(2)$
$\dfrac{5+3\lambda }{\sqrt{5+\lambda^2}\sqrt{14}}=\sqrt{\dfrac{5}{14}}$
$5+3\lambda=\sqrt{5}.\sqrt{5+\lambda^2}$
$(5+3\lambda)^2=5.(5+\lambda^2)$
$25+9\lambda^2+30\lambda =25+5\lambda^2$
$4\lambda^2+30\lambda =0$
$\lambda (2\lambda +15)=0\Rightarrow \lambda =0, \dfrac{15}{2}$
but $\lambda \neq 0$
So $\lambda =\dfrac{15}{2}$ Ans

How is the line $\displaystyle \frac{x-4}{4}=\frac{y-12}{12}=\frac{z-8}{8}$ related to the planes
(A) $\displaystyle x-y+z=0$
(B) $\displaystyle x-y+z-6=0$

  1. parallel to plane A but not B

  2. parallel to plane A and also lies in plane A but not parallel to B

  3. parallel to plane A and also lies in plane A

  4. none of these


Correct Option: C
Explanation:

A line is inclined at Φ to a plane. The vector equation of the line is given by 

$\vec r =\vec a + \lambda \vec b $
Let $\theta$ be the angle between the line and the normal to the plane. Its value can be given by the following equation
$cos\theta=|\dfrac{\vec b . \vec n }{|\vec b|.|\vec n |}|$
Finding the value of the $Φ$ between the line and the plane we know that 
parallel to plane A and also lies in plane A.

If the angle $\theta $ between the line $\displaystyle \frac{x+1}{1}=\frac{y-1}{2}=\frac{z-2}{2}$ and the plane $2x-y+\sqrt{\lambda} z+4=0$ is such that $\displaystyle \sin \theta =\frac{1}{3}$, then value of $\lambda $ is

  1. $\displaystyle -\frac{3}{5}$

  2. $\displaystyle \frac{5}{3}$

  3. $\displaystyle -\frac{4}{3}$

  4. $\displaystyle \frac{3}{4}$


Correct Option: B
Explanation:

Angle between the line and plane is same as the angle between the line and normal to the plane
$\displaystyle \therefore \cos \left ( 90^{0}-\theta  \right )=\frac{a _{1}a _{2}+b _{1}b _{2}+c _{1}c _{2}}{\sqrt{a _{1}^{2}+b _{1}^{2}+c _{1}^{2}}\sqrt{a _{2}^{2}+b _{2}^{2}+c _{2}^{2}}}$
$\displaystyle \therefore\frac{1}{3}=\frac{\left ( 1\times 2+2\times \left ( -1 \right )+2\sqrt{\lambda } \right )}{\sqrt{1^{2}+2^{2}+2^{2}}\sqrt{2^{2}+1^{2}+\lambda }} $

$\therefore  \lambda =\dfrac{5}{3}$

If $\displaystyle \theta$ is the angle between the line 
$\vec r=2i+j-k+\left ( i+j+k \right )t$ and the plane
$\displaystyle \vec r\cdot \left ( 3i-4j+5k \right )=q$, then

  1. $\displaystyle \cos \theta =\frac{2\sqrt{6}}{15}$

  2. $\displaystyle \sin \theta =\frac{2\sqrt{6}}{15}$

  3. $\displaystyle \sin \theta =-\frac{11\sqrt{7}}{70}$

  4. $\displaystyle \cos \theta =-\frac{11\sqrt{7}}{70}$


Correct Option: B
Explanation:

 $\theta$ is angle b/w $\xrightarrow [\gamma]{} =2\hat {  i}+j+k+(i+j+k)t$ and $\rightarrow.(3\hat { i }-4\hat { j }+5k)=q$

Angle b/w line and plane is given by 

$\sin\theta =\dfrac{4 _1a _2+b _1b _2+c _1c _2}{\sqrt{a _1^2+b _1^2+c _1^2}\sqrt{a _2^2+b _2^2+c _2^2}}$   

Where $(a _1,b _1,c _1)$ and $(a _2,b _2,c _2)$ are direction ratios of line and plane Respectively so here 

$a _1,b _1,c _1)=(1,1,1)$ and $(a _2,b _2,c _2)=(3,-4,5)$

So $\sin \theta=\dfrac{3-4+5}{\sqrt{1+1+1}\sqrt{9+16+25}}$

$\dfrac{4}{\sqrt{3}\sqrt{50}}=\dfrac{4}{\sqrt{3}5\sqrt{2}}=\dfrac{4}{\sqrt{6.5}}\times \dfrac{\sqrt{6}}{\sqrt{6}}=\dfrac{2\sqrt{6}}{5.3}=\dfrac{2\sqrt{6}}{15}$

so here $\sin\theta =\dfrac{2\sqrt{6}}{15} \Rightarrow \theta =\sin\dfrac{2\sqrt{6}}{15}$

The projection of line $\displaystyle\frac{x}{2}=\frac{y-1}{2}=\frac{z-1}{1}$ on a plane 'P' is $\displaystyle\frac{x}{1}=\frac{y-1}{1}=\frac{z-1}{-1}$. If the plane P passes through $(k, -2, 0)$, then k is greater than.

  1. $2$

  2. $3$

  3. $5$

  4. $4$


Correct Option: A
- Hide questions