0

The cartesian plane - class-XI

Description: the cartesian plane
Number of Questions: 33
Created by:
Tags: coordinate geometry graphs lines graph prerequisites coordinates co-ordinate geometry maths linear graphs position and movement
Attempted 0/33 Correct 0 Score 0

A Cartesian plane consists of two mutually _____ lines intersecting at their zeros.  

  1. perpendicular

  2. parallel

  3. at angle of $60^o$

  4. at angle of $30^o$


Correct Option: A
Explanation:

The Cartesian plane consists of two perpendicular and directed lines whose intersection point is the zero point for both the lines.

Option A is correct.

The coordinates of the point of intersection of X-axis and Y-axis is( 0,0)
State true or false.

  1. True

  2. False


Correct Option: A
Explanation:

x - axis and y- axis intersect at the origin. SO, point of intersection is (0,0)

The coordinates of a point on __axis are (0, y).

  1. y-axis

  2. x-axis

  3. cannot be determined

  4. none of the above


Correct Option: A
Explanation:

Since the x coordinate of the point is 0, its on the y axis.

The horizontal axis is called ______ axis.

  1. y-axis

  2. x-axis

  3. Ambiguous

  4. Data insufficient


Correct Option: B
Explanation:

The horizontal axis is called x-axis.

A pair of numerical coordinates is required to specify each point in a ......... plane.

  1. One-dimesion

  2. Cartesian

  3. both A and B

  4. none of the above


Correct Option: B
Explanation:

x and y coordinates are required to represent a point in cartesian plane.

Which statement is true?

  1. The x-axis is a vertical line

  2. The point $(-2 , 3)$ lies in the III quadrant

  3. Origin is the point of intersection of the x-axis and y-axis

  4. The point $(-3, -4)$ lies in the II quadrant


Correct Option: C
Explanation:

i) The x-axis ,a line parallel to it is called horizontal line

ii) The point (-2,3) lies in II Quadrant 
iii) Origin is the point of intersecting of x-axis and y-axis
iv) The point (-3,-4) lies in III quadrant .

Equation of the line $y = 0$ represents :

  1. y $-$ axis

  2. x $-$ axis

  3. both x $-$ axis and y $-$ axis

  4. origin


Correct Option: B
Explanation:

The equation of line $y$=0 represents $x$ -axis ie.$(x,y)$ = $(x,0)$

Slope of the line $AB$ is $-\dfrac {4}{3}$. Co-ordinates of points $A$ and $B$ are $(x, -5)$ and $(-5, 3)$ respectively. What is the value of $x$

  1. $-1$

  2. $2$

  3. $-2$

  4. $1$


Correct Option: D
Explanation:

$\dfrac {y _{2} - y _{1}}{x _{2} - x _{1}} = \dfrac {-4}{3} =\dfrac{3+5}{-5-x}=\dfrac{-4}{3}$

$\Rightarrow 24 = 20 + 4x$
$x = 1$.

The coordinates of $A, B$ and $C$ are $(5, 5), (2, 1)$ and $(0, k)$ respectively. The value of $k$ that makes $\overline {AB} + \overline {BC}$ as small as possible is

  1. $3$

  2. $4\dfrac {1}{2}$

  3. $3\dfrac {6}{7}$

  4. $4\dfrac {5}{6}$

  5. $2\dfrac {1}{7}$


Correct Option: E
Explanation:

The smallest possible value of $\overline {AC} + \overline {BC}$ is obtained when $C$ is the intersection of the y-axis, with the line that leads from $A$ to the mirror image the mirror being the y-axis) $B' : (-2, 1)$ of $B$. This is true because $\overline {CB'} = \overline {CB}$ and a straight line is the shortest path between two points. The line through and $B'$ given by
$y = \dfrac {5 - 1}{5 + 2} x + k = \dfrac {4}{7} x + k$.
To find $k$, we use the fact that the line goes through $A$:
$5 = \dfrac {4}{7} . 5 + k, k = 5 - \dfrac {20}{7} = \dfrac {15}{7} = 2\dfrac {1}{7}$;
$\therefore C$ has coordinates $(0, 2\dfrac {1}{7})$.

If the coordinates of vertices of a triangle is always rational then the triangle cannot be

  1. Scalene

  2. Isosceles

  3. Rightangle

  4. Equilateral


Correct Option: D
Explanation:

The triangle cannot be equilateral if coordinates of vertices of the triangle is always rational.

The abscissa of two points A and B are the roots of the equation ${x^2} + 2ax - {b^2}$ and their ordinates are the root of the equation ${x^2} + 2px - {q^2}=0$. the equation of the circle with AB as diameter is 

  1. ${x^2} + {y^2} + 2ax + 2py + {b^2} + {q^2} = 0$

  2. ${x^2} + {y^2} - 2ax - 2py - {b^2} - {q^2} = 0$

  3. ${x^2} + {y^2} + 2ax + 2py - {b^2} - {q^2} = 0$

  4. None of these


Correct Option: C
Explanation:
${ x }^{ 2 }+2ax-{ b }^{ 2 }=0$

Let roots be ${ x } _{ 1 }$ & ${ x } _{ 2 }$

${ x } _{ 1 }+{ x } _{ 2 }=\dfrac{-b}{a}=-2a$

$ { x } _{ 1 }{ x } _{ 2 }=\dfrac{c}{a}=-{ b }^{ 2 }$

$ { x }^{ 2 }+2px-{ q }^{ 2 }=0$

Let roots be ${ y } _{ 1 }$ & ${y } _{ 2 }$

${ y } _{ 1 }+{ y } _{ 2 }=-2p$

$ { y} _{ 1 }{ y } _{ 2 }=-{ q }^{ 2 }$

Equation in diametric form is 
${ x }^{ 2 }+{ y }^{ 2 }-({ x } _{ 1 }+{ x } _{ 2 })x-({ y } _{ 1 }+{ y } _{ 2 })y+{ x } _{ 1 }{ x } _{ 2 }+{ y } _{ 1 }{ y } _{ 2 }=0$

$ { x }^{ 2 }+{ y }^{ 2 }+2ax+2py-{ b }^{ 2 }-{ q }^{ 2 }=0$

The acute angle between the lines $x-y=0$ and $y=0$ is

  1. $30^{\circ}$

  2. $45^{\circ}$

  3. $60^{\circ}$

  4. $75^{\circ}$


Correct Option: B
Explanation:

Given 


$x-y=0$

$y=0$ represents $x-axis$ 

So the slope of line $x-y=0$ is $-\dfrac 1{-1}=1$

$\implies \tan \theta =1$

$\tan \theta =\tan \dfrac \pi 4$

$\theta =\dfrac \pi 4$

$\theta =45^{\circ}$

 If the distance between the points $\left( {a\,\cos {{48}^ \circ },0} \right)$ and $\left( {\,0,a\,\cos {{12}^ \circ }} \right)$ is d,then ${d^2} - {a^2} = $

  1. ${a^2}\left( {\sqrt 5 - 1} \right),/4$

  2. ${a^2}\left( {\sqrt 5 + 1} \right),/4$

  3. ${a^2}\left( {\sqrt 5 - 1} \right),/8$

  4. $\dfrac{a^2( {\sqrt 5 + 1} )}{8}$


Correct Option: D
Explanation:
Using distance formula,${d}^{2}={\left(a\cos{{48}^{\circ}}-0\right)}^{2}+{\left(0-a\cos{{12}^{\circ}}\right)}^{2}$

${d}^{2}-{a}^{2}={\left(a\cos{{48}^{\circ}}-0\right)}^{2}+{\left(0-a\cos{{12}^{\circ}}\right)}^{2}-{a}^{2}$

$={a}^{2}{\cos}^{2}{{48}^{\circ}}+{a}^{2}{\cos}^{2}{{12}^{\circ}}-{a}^{2}$

$={a}^{2}{\cos}^{2}{{48}^{\circ}}-{a}^{2}+{a}^{2}{\cos}^{2}{{12}^{\circ}}$

$={a}^{2}{\cos}^{2}{{48}^{\circ}}-{a}^{2}\left(1-{\cos}^{2}{{12}^{\circ}}\right)$

$={a}^{2}{\cos}^{2}{{48}^{\circ}}-{a}^{2}{\sin}^{2}{{12}^{\circ}}$

We know that ${\cos}^{2}{B}-{\sin}^{2}{A}=\cos{\left(A+B\right)}\cos{\left(A-B\right)}$

$={a}^{2}\cos{\left({12}^{\circ}+{48}^{\circ}\right)}\cos{\left({12}^{\circ}-{48}^{\circ}\right)}$

$={a}^{2}\cos{{60}^{\circ}}\cos{\left(-{36}^{\circ}\right)}$

$={a}^{2}\cos{{60}^{\circ}}\cos{{36}^{\circ}}$ since $\cos{\left(-\theta\right)}=\cos{\theta}$

$={a}^{2}\times\dfrac{1}{2}\times\dfrac{\sqrt{5}+1}{4}$

$=\dfrac{{a}^{2}\left(\sqrt{5}+1\right)}{8}$

If the points $A ( 2,1,1 ) , B ( 0 , - 1,4 ) , C ( K , 3 , - 2 )$ are collinear then $K =$

  1. k=5

  2. k=4

  3. k=9

  4. k=10


Correct Option: B

Find the number of points on the straight line which joins $\left( { - 4,\,11} \right)$ to $\left( { 16,\,- 1} \right)$ whose co-ordinates are positive integer.

  1. $1$

  2. $2$

  3. $3$

  4. $4$


Correct Option: C

If the points $( 2,0 ) , ( 0,1 ) , ( 4,5 ) \text { and } ( 0 , c )$ are concyclic then the value of $c$ is 

  1. $1,\dfrac{13}{3}$

  2. $5,\dfrac { 14 } { 3 }$

  3. $5,\dfrac{15}{4}$

  4. none of these


Correct Option: A
Explanation:
Consider equation of circle to be $x^2+y^2+2gx+2fg+c=0$
Substituting given points
$4+4g+c=0$ ………….(i)
$1+2f+c=0$ ………..(ii)
$39+8g+10f+c=0$ ……….(iii)
solving them $g=-25/12$; $f=-8/3$
$c=13/3$
$x^2+y^2-\dfrac{25}{6}x-\dfrac{16}{3}y+\dfrac{13}{3}=0$ is equation
Substituting $(0, c)$
$c^2-\dfrac{16}{3}c+13/3=0$
$c=1, 13/3$.

If points $( - 7,5 ) \text { and } \left( \alpha , \alpha ^ { 2 } \right)$ lie on the opposite sides of the line $5 x - 6 y - 1 = 0$ then 

  1. $\alpha \in [ 0,1 ]$

  2. $a \in [ - 1,0 ]$

  3. $\alpha \in \left( \dfrac { 1 } { 3 } , \dfrac { 1 } { 2 } \right)$

  4. $\alpha \in [ 2,4 ]$


Correct Option: C
Explanation:
$(-7, 5)$ & $(\alpha, \alpha^2)$ lie on opposite side of $5x-6y-1=0$

$(-7, 5)\rightarrow 5x-6y-1=5(-7)-6(5)-1$

$=-35-30-1$

$=-66 < 0$

as $(\alpha,\alpha^2)$ should be on the opposite of $5x-6y-1=0$

$\Rightarrow (\alpha, \alpha^2)\rightarrow 5x-6y-1=5\alpha-6\alpha^2-1 > 0$

$\Rightarrow 6\alpha^2-5\alpha +1 < 0$

$\Rightarrow 6\alpha^2-2\alpha -3\alpha +1 < 0$

$\Rightarrow 2\alpha(3\alpha -1)-1(3\alpha -1) < 0$

$\Rightarrow (2\alpha -1)(3\alpha -1) < 0$

$\Rightarrow \dfrac{1}{3} < \alpha < \dfrac{1}{2}$.

If the three distinct points $\left( t,2at+{ at }^{ 3 } \right)$ for $i=1,2,3$are collinear then the sum of the abscissa of the  _________.

  1. -1

  2. 0

  3. 1

  4. 3


Correct Option: B

The abscissa of a point on the curve $xy=(a+x)^{2}$, the normal cuts off numerically equal intercepts from the coordinate axes, is

  1. $-\dfrac{a}{\sqrt{2}}$

  2. $\sqrt{2}a$

  3. $\dfrac{a}{\sqrt{2}}$

  4. $-\sqrt{2}a$


Correct Option: A,C
Explanation:
Given,

$xy=(a+x)^2$

differentiating the above equation, we get,

$\Rightarrow y+xy'=2(a+x)$

substituting and solving the above equation, we get,

$\therefore y'=\pm 1$

$y \pm x =2(a+x)$

$\dfrac{(a+x)^2}{x}\pm x=2(a+x)$

$\Rightarrow \pm x=2(a+x)-\dfrac{(a+x)^2}{x}$

$\pm x^2=(2+x)[x-a]$

$\pm x^2=x62-a^2$

$\Rightarrow 2x^2=a^2$

$\therefore x=\pm \dfrac{a}{\sqrt 2}$

To remove Xy term from the second degree equation $5x^2 + 8xy + 5y^2 + 3x + 2y + 5 = 0$, the coordinates axes are rotated through an angle q, then q equals.

  1. $\pi/2$

  2. $\pi/4$

  3. $\pi/8$

  4. $\pi/8$


Correct Option: A

A line located in a space makes equal angle with the co-ordinate axis then angle makes by line from anyone axis are-

  1. $60^0$

  2. $45^0$

  3. $cos^{-1}1/3$

  4. $cos^{-1}1/\sqrt 3$


Correct Option: A

$C$ is a point on the line segment joining the points $A(2,-3,4)$ and $B(8,0,10)$. If the value of $y$-coordinate of $C$ is $-2$, then the $z-$coordinate of $C$ is

  1. $4$

  2. $6$

  3. $-4$

  4. $5$


Correct Option: B
Explanation:
Let C divides line joining AB in ratio $a:b$
Let $C\equiv \left( x,y,z \right) \equiv \left( x,-2,\alpha  \right) $
So, $-2=\cfrac { -3(b)+0(a) }{ a+b } $
$-2a-2b=-3b$
So, $2a=b$
So, $z=\cfrac { 4b+10a }{ a+b } =\cfrac { 4\left( 2a \right) +10\left( a \right)  }{ a+2a } =\cfrac { 18 }{ 3 } =6$

The area of the triangle formed y a tangents to the curve $2xy=a^{2}$ and the coordinates axes is

  1. $2a^{2}$

  2. $3a^{2}$

  3. $4a^{2}$

  4. $a^{2}$


Correct Option: A

If a point P from where line drawn cuts coordinate axes at A and B(with A on x-axis and B on y-axis) satisfies $\alpha\cdot \dfrac{x^2}{PB^2}+\beta\dfrac{y^2}{PA^2}=1$, then $\alpha +\beta$ is?

  1. $1$

  2. $2$

  3. $3$

  4. $4$


Correct Option: A

If the points $(k, 2 - 2k), (1 - k, 2k)$ and $(-k -4, 6 - 2k)$ be collinear the possible value(s) of $k$ is/are

  1. $\displaystyle -\frac{1}{2}$

  2. $\displaystyle \frac{1}{2}$

  3. $1$

  4. $-2$


Correct Option: B,C
Explanation:

Let the three points be,

$A=(k,2-2k)$
$B=(1-k,2k)$
$C=(-k-4,6-2k)$

If $A,B,C$ to be collinear, the area of the triangle formed by these three points must be $0$.

For these points to be collinear, we know that
$\left| \begin{matrix} k & 2-2k & 1 \ 1-k & 2k & 1 \ -k & 6-2k & 1 \end{matrix} \right| =0$

$k(2k-6+2k)-(2-2k)[(1-k)+k]+1[(1-k)(6-2k)+2k^2]=0$
$4k^2-6k-2+2k+6-8k+2k^2+2k^2=0$
$8k^2-12k+4=0$
$2k^2-3k+1=0$
$(2k-1)(k-1)=0$
$k=1,\dfrac{1}{2}$

The points (1, -1), $\displaystyle \left ( -\frac{1}{2},\frac{1}{2} \right )$ and (1, 2) are the vertices of an isosceles triangle

Say yes or no.

  1. Yes

  2. No

  3. Ambiguous

  4. Data insufficient


Correct Option: A
Explanation:

Let the point (1, -1), $\displaystyle \left ( -\frac{1}{2},\frac{1}{2} \right )$ and (1, 2) be denoted by P, Q and R respectively
Now PQ = $\displaystyle \sqrt{\left ( -\frac{1}{2}-1 \right )^{2}+\left ( \frac{1}{2}+1 \right )^{2}}=\sqrt{\frac{18}{4}}=\frac{3}{2}\sqrt{2}$
QR = $\displaystyle \sqrt{\left ( 1+\frac{1}{2} \right )^{2}+\left ( 2-\frac{1}{2} \right )^{2}}=\sqrt{\frac{18}{4}}=\frac{3}{2}\sqrt{2}$
PR = $\displaystyle \sqrt{\left ( 1-1 \right )^{2}+\left ( 2+1 \right )^{2}}=\sqrt{9}=3 $
From the above we see that PQ = QR
$\displaystyle \therefore $ The triangle is isosceles

The point $(5,\,3)$ lies on line $3x+2y=18$

  1. Yes

  2. No

  3. Cant predict

  4. None


Correct Option: B
Explanation:

Put $x=5,\,y=3$ in the given equation
LHS: $3x+2y=3\times5+2\times3$
$=15+6=21$
LHS $\neq RHS$
It does not lie on line $3x+2y=18$

Identify the true statement.

  1. The $X$-axis is a vertical line

  2. The $Y$-axis is a horizontal line

  3. The scale on both the axes must be the same in a Cartesian plane

  4. The point of intersection between the $X$-axis and $Y$-axis is called the origin


Correct Option: D
Explanation:

1) A line parallel to x-axis is called a horizontal line parallel to y-axis is called a vertical line.

2) The point of intersection between the X-axis and Y-axis is called the origin $(0,0)$

If a point $P$ has coordinates $(3,4)$ in a coordinate system $X'OX\leftrightarrow  Y'OY$, and if $O$ has coordinates $(4,3)$ in another system ${X} {1}'{O} _{1}{X} _{1}\leftrightarrow  {Y} _{1}'{O} _{1}{Y} _{1}$ with $X'OX\parallel  {X} _{1}'{O} _{1}{X} _{1}$, then the coordinates of $P$ in the new system ${X} _{1}'{O} _{1}{X} _{1}\leftrightarrow  {Y} _{1}'{O} _{1}{Y} _{1}$ is _______________

  1. $(3,4)$

  2. $(1,-1)$

  3. $(7,7)$

  4. $(-1,1)$


Correct Option: C
Explanation:

Given the point P has coordinate (3,4).Similarly O has (4,3)

Given that $X'OX\leftrightarrow Y'OY\ { X } _{ 1 }^{ ' }{ O } _{ 1 }{ X } _{ 1 }\leftrightarrow { Y } _{ 1 }^{ ' }{ O } _{ 1 }{ Y } _{ 1 }\ \Longrightarrow { X }^{ ' }OX\parallel { X } _{ 1 }^{ ' }{ O } _{ 1 }{ X } _{ 1 }$
$\therefore$ Coordinate of P in new system ${ X } _{ 1 }^{ ' }O{ X } _{ 1 }\leftrightarrow { Y } _{ 1 }^{ ' }O{ Y } _{ 1 }\ =(3+4,)=(7,7)$

Let a, b, c and d be non-zero numbers. If the point of intersection of the lines $4ax+2ay+c=0$ and $5bx+2by+d=0$ lies in the fourth quadrant and is equidistant from the two axes then

  1. $2bc-3ad=0$

  2. $2bc+3ad=0$

  3. $3bc-2ad=0$

  4. $3bc+2ad=0$


Correct Option: C
Explanation:
Solve the equations of two lines to get a point and satisfy it in the third equation of a line.

$4ax+2ay+c=0$ and $5bx+2by+d=0$

Let the point of intersection be $(k, -k)$

From both equations, we get 

$4ak-2ak+c=0\ ,\ 5bk-2bk+d=0$

$2ak+c=0\ ,\ 3bk+d=0$

$k=\dfrac{-c}{2a}\ ,\ k=\dfrac{-d}{3b}$

$\dfrac{-c}{2a}=\dfrac{-d}{3b}$

$\therefore 3bc-2ad=0$

Option C

The points $A\left( {2a,\,4a} \right),\,B\left( {2a,\,6a} \right)\,$ and $C\left( {2a + \sqrt 3 a,\,5a} \right)$ (when $a>0$) are vertices of 

  1. an obtuse angled triangle

  2. an equilateral triangle

  3. an isosceles obtuse angled triangle

  4. a right angled triangle


Correct Option: B
Explanation:

Consider the given point

$A\left( 2a,4a \right),\,B\left( 2a,6a \right)\,and\,C\left( 2a+\sqrt{3}a,5a \right)$

Distance between AB,BC and CA  respectively.

$ AB=\sqrt{{{\left( 2a-2a \right)}^{2}}+{{\left( 4a-6a \right)}^{2}}} $

$ =\sqrt{0+{{(-2a)}^{2}}} $

$ =\sqrt{4{{a}^{2}}}=2a $

$ BC=\sqrt{{{\left( 2a-(2a+\sqrt{3}a) \right)}^{2}}+{{\left( 6a-5a \right)}^{2}}} $

$ =\sqrt{3{{a}^{2}}+{{a}^{2}}} $

$ =\sqrt{4{{a}^{2}}}=2a $

$ CA=\sqrt{{{\left( 2a+\sqrt{3}a-2a \right)}^{2}}+{{\left( 5a-4a \right)}^{2}}} $

$ =\sqrt{3{{a}^{2}}+{{a}^{2}}} $

$ =\sqrt{4{{a}^{2}}}=2a $

Hence, $AB=BC=CA$

It is an equilateral triangle.

Option (B) is correct answer.

Mid point of $A(0, 0)$ and $B(1024, 2050)$ is ${A _1}$. mid point of ${A _1}$ and B is ${A _2}$ and so on. Coordinates of ${A _{10}}$ are.

  1. $(1022, 2044)$

  2. $(1025, 2050)$

  3. $(1023, 2046)$

  4. $(1, 2)$


Correct Option: C

If the coordinates of the extermities of diagonal of a square are $(2,-1)$ and $(6,2)$, then the coordinates of extremities of other diagonal are 

  1. $\left(\dfrac{5}{2},\dfrac{5}{2}\right)$

  2. $\left(\dfrac{11}{2},\dfrac{3}{2}\right)$

  3. $\left(\dfrac{11}{2},\dfrac{-3}{2}\right)$

  4. $\left(\dfrac{5}{2},-\dfrac{5}{2}\right)$


Correct Option: C
Explanation:

$\begin{array}{l} Coordination\, \, of\, \, mid-po{ { int } }\, \, 0 \ =\left( { \frac { { 6+2 } }{ 2 } ,\frac { { 2-1 } }{ 2 }  } \right)  \ =\left( { 4,\frac { 1 }{ 2 }  } \right)  \ AB=BC \ \Rightarrow { \left( { { x _{ 1 } }-2 } \right) ^{ 2 } }+{ \left( { { y _{ 1 } }+1 } \right) ^{ 2 } }={ \left( { { x _{ 1 } }-6 } \right) ^{ 2 } }+{ \left( { { y _{ 1 } }-2 } \right) ^{ 2 } } \ \Rightarrow 8{ x _{ 1 } }+6{ y _{ 1 } }=35\to (i) \ AO=BO \ \Rightarrow { \left( { 2-4 } \right) ^{ 2 } }+{ \left( { -1-\frac { 1 }{ 2 }  } \right) ^{ 2 } }={ \left( { { x _{ 1 } }-4 } \right) ^{ 2 } }+{ \left( { { y _{ 1 } }-\frac { 1 }{ 2 }  } \right) ^{ 2 } } \ \Rightarrow 4+\frac { 9 }{ 4 } =x _{ _{ 1 } }^{ 2 }+y _{ 1 }^{ 2 }-8{ x _{ 1 } }-{ y _{ 1 } }+16+\frac { 1 }{ 4 }  \ \Rightarrow x _{ 1 }^{ 2 }+y _{ 1 }^{ 2 }-8{ x _{ 1 } }-{ y _{ 1 } }=-10\to (ii) \ from\, \, equation\, \, (i) \ put \ { x _{ 1 } }=\frac { { 35-6{ y _{ 1 } } } }{ 8 } \, \, in\, \, equation\, \, (ii) \ \Rightarrow { \left( { \frac { { 35-6{ y _{ 1 } } } }{ 8 }  } \right) ^{ 2 } }+y _{ 1 }^{ 2 }-\left( { 35-6{ y _{ 1 } } } \right) { y _{ 1 } }=-10 \ \Rightarrow 4y _{ 1 }^{ 2 }-4{ y _{ 1 } }-15=0 \ \Rightarrow \left( { 2{ y _{ 1 } }+3 } \right) \left( { { y _{ 1 } }-5 } \right) =0 \ \Rightarrow { y _{ 1 } }=\frac { { -3 } }{ 2 } ,5 \ { y _{ 1 } }=\frac { { -3 } }{ 2 } \to { x _{ 1 } }=\frac { { 35-6\times -\frac { 3 }{ 2 }  } }{ 8 } =\frac { { 11 } }{ 2 }  \ { y _{ 1 } }=5\to { x _{ 1 } }=\frac { { 35-6\times 5 } }{ 8 } =\frac { 5 }{ 8 }  \ The\, \, vertices\, of\, \, other\, \, two\, vertices\, \, are \ \left( { \frac { { 11 } }{ 2 } ,\frac { { -3 } }{ 2 }  } \right) \, \, and\, \, \left( { \frac { 5 }{ 8 } ,5 } \right)  \end{array}$

- Hide questions