0

Defining regular polygons - class-IX

Attempted 0/29 Correct 0 Score 0

If $A+B=\dfrac{\pi}{3}$ and $\cos{A}+\cos{B}=1$, then which of the following is true

  1. $\cos{\left(A-B\right)}=\dfrac{1}{3}$

  2. $\left|\cos{A}-\cos{B}\right|=\sqrt{\dfrac{2}{3}}$

  3. $\cos{\left(A-B\right)}=-\dfrac{1}{3}$

  4. $\left|\cos{A}-\cos{B}\right|=\dfrac{1}{2\sqrt{3}}$


Correct Option: B,C
Explanation:

$\cos{A}+\cos{B}=1$


$\Rightarrow 2\cos{\left(\dfrac{A+B}{2}\right)}\cos{\left(\dfrac{A-B}{2}\right)}=1$

Since $A+B=\dfrac{\pi}{3}\Rightarrow \dfrac{A+B}{2}=\dfrac{\pi}{6}$
Hence $\cos{\left(\dfrac{A+B}{3}\right)}=\cos{\left(\dfrac{\pi}{6}\right)}=\dfrac{\sqrt{3}}{2}$

$\Rightarrow 2\cos{\left(\dfrac{A-B}{2}\right)}=\dfrac{1}{\dfrac{\sqrt{3}}{2}}$

$\Rightarrow \cos{\left(\dfrac{A-B}{2}\right)}=\dfrac{1}{\sqrt{3}}$

Squaring both sides, we get

${\cos}^{2}{\left(\dfrac{A-B}{2}\right)}=\dfrac{1}{3}$

$\Rightarrow 2{\cos}^{2}{\left(\dfrac{A-B}{2}\right)}=\dfrac{2}{3}$

$\Rightarrow 2{\cos}^{2}{\left(\dfrac{A-B}{2}\right)}-1=\dfrac{2}{3}-1=\cos {(A-B)}=\dfrac{-1}{3}$

$\left|\cos{A}-\cos{B}\right|=2\sin{\left(\dfrac{A+B}{2}\right)}\sin{\left(\dfrac{B-A}{2}\right)}$

                    $=2\times\dfrac{1}{2}\sqrt{1-\dfrac{1}{3}}$

                    $=\sqrt{\dfrac{2}{3}}$ (on simplification)

If $R$ is the radius of circumscribing circle of a regular polygon of $n$ sides, then $R =?$

  1. $\dfrac{a}{2} sin (\dfrac{\pi}{n})$

  2. $\dfrac{a}{2} cos (\dfrac{\pi}{n})$

  3. $\dfrac{a}{2} cosec (\dfrac{\pi}{n})$

  4. $\dfrac{a}{2} cosec (\dfrac{\pi}{2n})$


Correct Option: C
Explanation:
since, it is a regular polygon so its interior angle will be equal  

Hence, $nA=\pi\Rightarrow A=\dfrac{\pi}{n}$

and we know that 
$\dfrac{a}{sinA}=2R\Rightarrow R=\dfrac{a}{2}cosec(\dfrac{\pi}{n})$

therefore,Answer is $C$

Two consecutive vertices of a regular hexagon $A _1A _2A _3A _4A _5A _6$ are $A _1\equiv (1, 0), A _2\equiv (3, 0)$. If the centre of hexagon lies above the x-axis, then equation of the circumcircle of the hexagon is?

  1. $x^2+y^2-4x-2\sqrt{3}y+\dfrac{17}{3}=0$

  2. $x^2+y^2-4x-2\sqrt{3}y+\dfrac{25}{3}=0$

  3. $x^2+y^2-4x-2\sqrt{3}y+3=0$

  4. None of the above


Correct Option: A

Let ${A} _{0}{A} _{1}{A} _{2}{A} _{3}{A} _{4}{A} _{5}$ be a regular hexagon inscribed in a circle of unit radius.Then the product of the length of  ${A} _{0}{A} _{1}.{A} _{0}{A} _{2}.{A} _{0}{A} _{4}$ is

  1. $\dfrac{3}{4}$

  2. $3\sqrt{3}$

  3. $3$

  4. $\dfrac{3\sqrt{3}}{2}$


Correct Option: C
Explanation:

Given ${A} _{0}{A} _{1}{A} _{2}{A} _{3}{A} _{4}{A} _{5}$ is  a regular hexagon inscribed in a circle of unit radius
$\Rightarrow {A} _{0}{A} _{1}=1$
$\Rightarrow {A} _{0}{A} _{2}=2\sin{{60}^{0}}=2\times\dfrac{\sqrt{3}}{2}=\sqrt{3}$
$\Rightarrow {A} _{0}{A} _{4}=2\sin{{60}^{0}}=2\times\dfrac{\sqrt{3}}{2}=\sqrt{3}$
$\therefore {A} _{0}{A} _{1}.{A} _{0}{A} _{2}.{A} _{0}{A} _{4}=1\times \sqrt{3}\times\sqrt{3}=3$

In the given regular hexagon of side $8\ cm$, six circles of equal radius are inscribe as shown in figure. The area of the unshaded region is $(in\ cm^{2})$

  1. $99\sqrt{3} -144 \sqrt{3} (\pi -2)$

  2. $99\sqrt{3} -144 \sqrt{3} (2-\sqrt{3})$

  3. $96\sqrt{3}-144 \pi$

  4. $99\sqrt{3} -144 \sqrt{3} (\pi -\sqrt{3})$


Correct Option: A

The area of a regular polygon of n sides is (where r is inradius, R is circumradius, and a is side of the triangle)

  1. $\displaystyle \frac{nR^{2}}{2}\sin \left ( \frac{2\pi }{n} \right )$

  2. $\displaystyle nr^{2}\tan \left( \frac{\pi }{n} \right )$

  3. $\displaystyle \frac{na^{2}}{4}\cot \frac{\pi }{n} $

  4. $\displaystyle nR^{2}\tan(\frac {\pi}{n})$


Correct Option: A,B,C
Explanation:

Area of the regular polygon will be 
$=\dfrac{nR^{2}}{2}sin(\dfrac{2\pi}{n})$.
Now 
$R=\dfrac{s}{2sin(\dfrac{\pi}{n})}$
Hence
$A=\dfrac{ns^{2}}{8sin^{2}\dfrac{\pi}{n}}.2sin(\dfrac{\pi}{n}).cos(\dfrac{\pi}{n})$

$=\dfrac{ns^{2}}{4}.cot(\dfrac{\pi}{n})$. where s is the side of the polygon.

$=nr^{2}.tan(\dfrac{\pi}{n})$ where r is the incentre.

If the area of the pentagon $ABCDE$ be $\dfrac{45}{2}$ where $A = (1, 3), B = (-2, 5), C = (-3, -1), D = (0, -2)$ and $E = (2, t)$, then $t$ is:

  1. $-1$

  2. $99$

  3. $-1, 99$

  4. $-1, \dfrac{1}{99}$


Correct Option: A

If $r$ is the radius of the inscribed circle of a regular polygon of $n$ sides, then $r$ is equal to?

  1. $\dfrac{a}{2} cot (\dfrac{\pi}{2n})$

  2. $\dfrac{a}{2} cot (\dfrac{\pi}{n})$

  3. $\dfrac{a}{2} tan (\dfrac{\pi}{n})$

  4. $\dfrac{a}{2} cos (\dfrac{\pi}{n})$


Correct Option: B
Explanation:

in $\Delta{ABL}$, $AL$ is the radius of the inscribed circle. 


$ BL=\cfrac{BC}{2}=\cfrac{a}{2}$

$\cot(\cfrac{\pi}{n})=\cfrac{AL}{BL}=\cfrac{r}{\dfrac{a}{2}}$

Hence $r=\cfrac{a(\cot(\dfrac{\pi}{n}))}{2}$

Area of the regular hexagon each of whose sides measures $1 \,cm$ is:

  1. $2.598 \,cm^2$

  2. $25.98 \,cm^2$

  3. $259.8 \,cm^2$

  4. None of these


Correct Option: A

if $\frac { 1 }{ { a } _{ x }+1 } are\quad 8$ vertices of a rectengular octagon where ${ a } _{ k }\epsilon$ R, K =1,2,3,.....,8(where $ i =\sqrt { -1 } )$then area of the regular octagon is

  1. $1$

  2. $\sqrt { 2 } $

  3. $\frac { 1 }{ \sqrt { 2 } } $

  4. none


Correct Option: A

in the given figure,BD is a side a regular hexagon,DC is a side of a regular pentagon and AD is a diameter calculate

  1. $\angle ADC$

  2. $\angle BDA$

  3. $\angle ABC$

  4. $\angle AEC$


Correct Option: A

What is the solid angle subtended by a hemisphere at its center? 

  1. $2\pi$ steradian

  2. $\pi$ steradian

  3. $3\pi$ steradian

  4. $4\pi$ steradian


Correct Option: A
Explanation:
Solid angle $(\Omega)=\dfrac{A}{r^2}$

for a hemisphere, $A=2\pi r^2$

so, $\Omega =\dfrac{2\pi r^2}{r^2}=2\pi$ steradians

Ans is (A).

The area of a regular polygon of $2n$ sides inscribed in a circle is given by?

  1. The geometric mean of the areas of the inscribed and circumscribed polygons of $n$ sides.

  2. The arithmetic mean of the areas of the inscribed and circumscribed polygons of $n$ sides.

  3. The harmonic mean of the areas of the inscribed and circumscribed polygons of $n$ sides.

  4. None of the above


Correct Option: A
Explanation:

Let $a$ be the radius of the circle 


Then,$\displaystyle s _{1}= $ Area of regular polygon of n sides inscribed in the circle $\displaystyle =\frac{1}{2}na^{2}\sin\left ( \frac{2\pi }{n} \right )$

$\displaystyle s _{2}= $  Area of regular polygon of n sides circumscribing in the circle $\displaystyle  = na^{2}\tan \frac{\pi }{n}$

$\displaystyle s _{3}= $ Area of regular polygon of 2n sides inscribed in the circle $\displaystyle  = na^{2}\tan \frac{\pi }{n}$ 

[replacing $n$ by $2n$ is $\displaystyle {(S _{1}}$]

$\displaystyle \therefore $ Geometric mean of $\displaystyle {S _{1}}$ and 

$\displaystyle {S _{2}}$ $\displaystyle = \sqrt{(S _{1}S _{2})}= na^{2}\sin\left ( \frac{\pi }{n}\right ) = S _{3}$

If A B C D E F is a regular hexagon with A B = a and B C = b, then CE equals

  1. b-a

  2. -b

  3. b-2a

  4. None of these


Correct Option: A

If A B C D E F  is a regular hexagon with A B = a and B C = b , then CE equals

  1. b-a

  2. -b

  3. b-2a

  4. None of these


Correct Option: A

If  $\alpha$  is the angle which each side of a regular polygon of  $n$  sides subtends at its centre, then  $1 + \cos \alpha + \cos 2 \alpha + \cos 3 \alpha \ldots + \cos ( n - 1 ) \alpha$  is equal to

  1. $n$

  2. $0$

  3. $1$

  4. None of these


Correct Option: A

Relation between circumradius and number of sides is given by-

  1. $Area=\dfrac{r^2n\sin(\dfrac{360}{n})}{3}$

  2. $Area=\dfrac{r^2n\sin(\dfrac{360}{n})}{2}$

  3. $Area=\dfrac{r^2n\cos(\dfrac{360}{n})}{2}$

  4. None of the above


Correct Option: B

The sum of the radii of inscribed and circumscribed circles of an n sided regular polygon of side $'a'$ is

  1. $=\frac{a}{2} \left ( \frac{1}{\sin \pi/2x} + \cot \frac{\pi}{x} \right )$

  2. $=\frac{a}{2} \left ( \frac{1}{\sin \pi/x} + \cot \frac{\pi}{2x} \right )$

  3. $=\frac{a}{2} \left ( \frac{1}{\sin \pi/x} + \cot \frac{\pi}{x} \right )$

  4. None of these


Correct Option: C
Explanation:

$R\sin \theta  = \frac{a}{2}$
$R = \frac{a}{2\sin \theta }$
$\tan \theta = \frac{a/2}{r}$
$r = \frac{a}{2\tan \theta }                                   \theta = \frac{2\pi}{n} \times\frac{1}{2}$
$R+r = \frac{a}{2} \left ( \frac{1}{\sin \theta}+\frac{\sin \theta}{\cos \theta } \right )             = \frac{\pi}{x}$
    $= \frac{a}{2} \left ( \frac{1}{\sin \pi/x} + \cot \frac{\pi}{x} \right )$

In $\Delta ABC$, there are 35 lines drawn parallel to the base BC such that each line divides the other side into, equal parts. 
If BC =1.8 m find the length of $P _7 Q _7$.

  1. 1.8 m

  2. 3.5 m

  3. 0.35 m

  4. 0.18 m


Correct Option: C

For a regular hexagon with apothem $5m$, the side length is about $5.77m$. The area of the regular hexagon is (in $m^2$).

  1. $75.5$

  2. $85.5$

  3. $76.5$

  4. $86.5$


Correct Option: D
Explanation:

For a regular hexagon with apothem $5 m$ the side length is about $5.77m$.
Use the formula
$A = \frac{1}{2}pa$
to find the area of the hexagon.
The perimeter of the hexagon is about $6(5.77)$ or $34.62m$.
Now substitute the values.
$A = \frac{1}{2} (34.62)(5)$
Simplify.
$A = \frac{1}{2}(173.1)$
= $86.5$
$A = \frac{1}{2}(173.1)$
= $86.5$
Therefore, the area of the regular hexagon is about $86.5 m^2$.

If $D$ is the midpoint of side $BC$ of a triangle $ABC$ and $AD$ is perpendicular to $AC$ then

  1. $3{a}^{2}={b}^{2}-3{c}^{2}$

  2. $3{b}^{2}={a}^{2}-{c}^{2}$

  3. ${b}^{2}={a}^{2}-{c}^{2}$

  4. ${a}^{2}+{b}^{2}=5{c}^{2}$


Correct Option: B
Explanation:

In $\triangle ACD, \cos{C}=\dfrac{b}{\left(\dfrac{a}{2}\right)}$
$\Rightarrow \dfrac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}=\dfrac{2b}{a}$
$\Rightarrow \dfrac{{a}^{2}+{b}^{2}-{c}^{2}}{2b}=2b$
$\Rightarrow {a}^{2}+{b}^{2}-{c}^{2}=4{b}^{2}$
$\Rightarrow {a}^{2}-{c}^{2}=3{b}^{2}$

If the angles of a triangle are in the ratio $2:3:7,$ then the sides opposite to these angles are in the ratio

  1. $\sqrt{2}:2:\left(\sqrt{3}+1\right)$

  2. $2:\sqrt{2}:\left(\sqrt{3}+1\right)$

  3. $1:\sqrt{2}:\dfrac{\sqrt{2}}{\left(\sqrt{3}-1\right)}$

  4. $\dfrac{1}{\sqrt{2}}:1:\left(\dfrac{\sqrt{3}+1}{2}\right)$


Correct Option: A,C,D
Explanation:

Let $A=2\alpha, B=3\alpha, C=7\alpha$
$\therefore A+B+C={180}^{0}$
$\Rightarrow 2\alpha+3\alpha+7\alpha={180}^{0}$
$\Rightarrow 12\alpha={180}^{0}$
$\Rightarrow \alpha={15}^{0}$
$\therefore A=2\alpha=2\times{15}^{0}={30}^{0}$
$B=3\alpha=3\times{15}^{0}={45}^{0}$
$C=7\alpha=7\times{15}^{0}={105}^{0}$
$a:b:c=\sin{{30}^{0}}:\sin{{45}^{0}}:\sin{{105}^{0}}$
       $=\dfrac{1}{2}:\dfrac{1}{\sqrt{2}}:\dfrac{\sqrt{3}+1}{2\sqrt{2}}$
$a:b:c=\sqrt{2}:2:\sqrt{3}+1$
        $=\dfrac{1}{\sqrt{2}}:1:\dfrac{\sqrt{3}+1}{2}$
or $1:\sqrt{2}:\dfrac{\sqrt{2}\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}{2\left(\sqrt{3}-1\right)}$
or $1:\sqrt{2}:\dfrac{2\sqrt{2}}{2\left(\sqrt{3}-1\right)}$
$\therefore a:b:c= 1:\sqrt{2}:\dfrac{\sqrt{2}}{\sqrt{3}-1}$

In a triangle $ABC, \cos{A}+\cos{B}+\cos{C}=\dfrac{3}{2}$ then the triangle is

  1. isosceles

  2. right-angled

  3. equilateral

  4. none of these.


Correct Option: C
Explanation:

$\cos{A}+\cos{B}+\cos{C}=\dfrac{3}{2}$
Using transformation angle formula, we have
$\left(\cos{A}+\cos{B}\right)+\cos{C}=\dfrac{3}{2}$
$\Rightarrow 2\cos{\left(\dfrac{A+B}{2}\right)}\cos{\left(\dfrac{A-B}{2}\right)}+\cos{C}=\dfrac{3}{2}$
Using sub-multiple angle formula to $\cos{C}=1-2{\sin}^{2}{\dfrac{C}{2}}$ we get
$\Rightarrow  2\cos{\left(\dfrac{A+B}{2}\right)}\cos{\left(\dfrac{A-B}{2}\right)}+1-2{\sin}^{2}{\dfrac{C}{2}}=\dfrac{3}{2}$ 
Since $A+B+C=\pi\Rightarrow \dfrac{A+B}{2}=\dfrac{\pi}{2}-\dfrac{C}{2}$
$\Rightarrow  2\cos{\left(\dfrac{\pi}{2}-\dfrac{C}{2}\right)}\cos{\left(\dfrac{A-B}{2}\right)}-2{\sin}^{2}{\dfrac{C}{2}}=\dfrac{3}{2}-1$
$\Rightarrow 2\sin{\left(\dfrac{C}{2}\right)}\cos{\left(\dfrac{A-B}{2}\right)}-2{\sin}^{2}{\dfrac{C}{2}}=\dfrac{1}{2}$
$\Rightarrow 2\sin{\left(\dfrac{C}{2}\right)}\left[\cos{\left(\dfrac{A-B}{2}\right)}+{\sin\left(\dfrac{C}{2}\right)}\right]=\dfrac{1}{2}$
Again
$\Rightarrow 2\sin{\left(\dfrac{C}{2}\right)}\left[\cos{\left(\dfrac{A-B}{2}\right)}+{\sin\left(\dfrac{\pi}{2}-\dfrac{A+B}{2}\right)}\right]=\dfrac{1}{2}$
$\Rightarrow 2\sin{\left(\dfrac{C}{2}\right)}\left[\cos{\left(\dfrac{A-B}{2}\right)}+{\cos\left(\dfrac{A+B}{2}\right)}\right]=\dfrac{1}{2}$
Using transformation angle formula, we get
$\Rightarrow \sin{\left(\dfrac{C}{2}\right)}\left[2\sin{\left(\dfrac{B}{2}\right)}\sin{\left(\dfrac{A}{2}\right)}\right]=\dfrac{1}{4}$
$\Rightarrow \sin{\left(\dfrac{A}{2}\right)}\sin{\left(\dfrac{B}{2}\right)}\sin{\left(\dfrac{C}{2}\right)}=\dfrac{1}{8}$
$\therefore \sin{\left(\dfrac{A}{2}\right)}=\dfrac{1}{2}, \sin{\left(\dfrac{B}{2}\right)}=\dfrac{1}{2},\sin{\left(\dfrac{C}{2}\right)}=\dfrac{1}{2}$
$\Rightarrow \sin{\left(\dfrac{A}{2}\right)}=\sin{\dfrac{\pi}{6}}, \sin{\left(\dfrac{B}{2}\right)}=\sin{\dfrac{\pi}{6}},\sin{\left(\dfrac{C}{2}\right)}=\sin{\dfrac{\pi}{6}}$
$\therefore {\left(\dfrac{A}{2}\right)}={\left(\dfrac{B}{2}\right)}={\left(\dfrac{C}{2}\right)}=\dfrac{\pi}{6}$
$\Rightarrow \angle{A}=\angle{B}=\angle{C}=2\times\dfrac{\pi}{6}=\dfrac{\pi}{3}$
Hence, the triangle is equilateral.

Let ${A} _{0}{A} _{1}{A} _{2}{A} _{3}{A} _{4}{A} _{5}$ be a regular hexagon inscribed in a circle of unit radius.The product of the length of the line segments ${A} _{0}{A} _{1},{A} _{0}{A} _{2}$ and ${A} _{0}{A} _{4}$ is

  1. $\dfrac{3}{4}$

  2. $3\sqrt{3}$

  3. $3$

  4. $\dfrac{3\sqrt{3}}{2}$


Correct Option: C
Explanation:

${A} _{0}{A} _{1}=2.1.\cos{\dfrac{\pi}{3}}=2.1.\dfrac{1}{2}=1={A} _{1}{A} _{2}$
$\cos{\dfrac{2\pi}{3}}=\dfrac{{\left({A} _{0}{A} _{1}\right)}^{2}+{\left({A} _{1}{A} _{2}\right)}^{2}-{\left({A} _{0}{A} _{2}\right)}^{2}}{2{A} _{0}{A} _{1}.{A} _{1}{A} _{2}}$
$\Rightarrow \cos{\left(\pi-\dfrac{\pi}{3}\right)}=\dfrac{1+1-{\left({A} _{0}{A} _{2}\right)}^{2}}{2.1.1}$
$\Rightarrow -\cos{\dfrac{\pi}{3}}=\dfrac{2-{\left({A} _{0}{A} _{2}\right)}^{2}}{2}$
$\Rightarrow \dfrac{-1}{2}=\dfrac{2-{\left({A} _{0}{A} _{2}\right)}^{2}}{2}$
$\Rightarrow -1=2-{\left({A} _{0}{A} _{2}\right)}^{2}$
$\Rightarrow {\left({A} _{0}{A} _{2}\right)}^{2}=3$
$\therefore {A} _{0}{A} _{2}=\sqrt{3}={A} _{0}{A} _{4}$
$\therefore {A} _{0}{A} _{1}\times {A} _{0}{A} _{2}\times{A} _{0}{A} _{4}=1\times\sqrt{3}\times\sqrt{3}=3$

The ratio of the areas of two regular octagons which are respectively inscribed and circumscribed to a circle of radius $r$ is

  1. $\cos{\dfrac{\pi}{8}}$

  2. ${\sin}^{2}{\dfrac{\pi}{8}}$

  3. ${\cos}^{2}{\dfrac{\pi}{8}}$

  4. ${\tan}^{2}{\dfrac{\pi}{8}}$


Correct Option: C
Explanation:

Inscribed circle of a regular polygon of $n$ sides
${A} _{1}=n{r}^{2}\tan{\dfrac{\pi}{n}}$
Here $n=8$
$\therefore {A} _{1}=8{r}^{2}\tan{\dfrac{\pi}{8}}$
Circumscribed circle of a regular polygon of $n$ sides is
${A} _{2}=\dfrac{n{R}^{2}}{2}\sin{\dfrac{2\pi}{n}}$
For $n=8$ we have
${A} _{2}=\dfrac{8{R}^{2}}{2}\sin{\dfrac{2\pi}{8}}$
  $=\dfrac{8{R}^{2}}{2}\sin{\dfrac{\pi}{4}}$
  $=\dfrac{8{r}^{2}}{2}2\sin{\dfrac{\pi}{8}}\cos{\dfrac{\pi}{8}}$ (for $R=r$)
  $=8{r}^{2}\sin{\dfrac{\pi}{8}}\cos{\dfrac{\pi}{8}}$ 
$\therefore \dfrac{{A} _{2}}{{A} _{1}}=\dfrac{8{r}^{2}\sin{\dfrac{\pi}{8}}\cos{\dfrac{\pi}{8}}}{8{r}^{2}\tan{\dfrac{\pi}{8}}}$
$=\dfrac{\sin{\dfrac{\pi}{8}}\cos{\dfrac{\pi}{8}}}{\dfrac{\sin{\dfrac{\pi}{8}}}{\cos{\dfrac{\pi}{8}}}}$
$={\cos}^{2}{\dfrac{\pi}{8}}$

If ${A} _{1}{A} _{2}{A} _{3}...{A} _{n}$ be a regular polygon of $n$ sides and 
$\dfrac{1}{{A} _{1}{A} _{2}}=\dfrac{1}{{A} _{1}{A} _{3}}+\dfrac{1}{{A} _{1}{A} _{4}},$then

  1. $n=5$

  2. $n=6$

  3. $n=7$

  4. none of these.


Correct Option: C
Explanation:

If radius of circle is $r$ then 
${A} _{1}{A} _{2}=2r\sin{\left(\dfrac{\pi}{n}\right)}$
${A} _{1}{A} _{3}=2r\sin{\left(\dfrac{2\pi}{n}\right)}$
${A} _{1}{A} _{4}=2r\sin{\left(\dfrac{3\pi}{n}\right)}$
$\because \dfrac{1}{{A} _{1}{A} _{2}}=\dfrac{1}{{A} _{1}{A} _{3}}+\dfrac{1}{{A} _{1}{A} _{4}}$
$\Rightarrow \dfrac{1}{2r\sin{\left(\dfrac{\pi}{n}\right)}}=\dfrac{1}{2r\sin{\left(\dfrac{2\pi}{n}\right)}}+\dfrac{1}{2r\sin{\left(\dfrac{3\pi}{n}\right)}}$
$\Rightarrow \sin{\left(\dfrac{2\pi}{n}\right)}\sin{\left(\dfrac{3\pi}{n}\right)}=\sin{\left(\dfrac{3\pi}{n}\right)}\sin{\left(\dfrac{\pi}{n}\right)}+\sin{\left(\dfrac{2\pi}{n}\right)}\sin{\left(\dfrac{\pi}{n}\right)}$
$\Rightarrow \sin{\left(\dfrac{2\pi}{n}\right)}\left[\sin{\left(\dfrac{3\pi}{n}\right)}-\sin{\left(\dfrac{\pi}{n}\right)}\right]=\sin{\left(\dfrac{3\pi}{n}\right)}\sin{\left(\dfrac{\pi}{n}\right)}$
Using transformation angle formula, we get
$\Rightarrow \sin{\left(\dfrac{2\pi}{n}\right)}.2\cos{\left(\dfrac{2\pi}{n}\right)}\sin{\left(\dfrac{\pi}{n}\right)}=\sin{\left(\dfrac{3\pi}{n}\right)}\sin{\left(\dfrac{\pi}{n}\right)}$
$\Rightarrow 2\sin{\left(\dfrac{2\pi}{n}\right)}\cos{\left(\dfrac{2\pi}{n}\right)}=\sin{\left(\dfrac{3\pi}{n}\right)}$
Using multiple angle formula, $2\sin{A}\cos{A}=\sin{2A}$ we get
$\sin{\left(\dfrac{4\pi}{n}\right)}=\sin{\left(\dfrac{3\pi}{n}\right)}$
$\therefore \dfrac{4\pi}{n}=r+{\left(-1\right)}^{r}\dfrac{3}{n}$ for $r=1,n=7$

If $r$ and $R$ are respectively the radii of the inscribed and circumscribed circles of a regular polygon of $n$ sides such that $\dfrac{R}{r}=\sqrt{5}-1$, then $n$ is equal to

  1. $5$

  2. $6$

  3. $10$

  4. $18$


Correct Option: A
Explanation:

Let $a$ be the length of side of regular polygon then
$R=\dfrac{a}{2}\csc{\left(\dfrac{\pi}{n}\right)}$ and $r=\dfrac{a}{2}\cot{\left(\dfrac{\pi}{n}\right)}$
$\therefore \dfrac{R}{r}=\dfrac{\csc{\left(\dfrac{\pi}{n}\right)}}{\cot{\left(\dfrac{\pi}{n}\right)}}=\dfrac{\dfrac{1}{\sin\left(\frac{\pi}{n}\right)}}{\dfrac{\cos{\frac{\pi}{n}}}{\sin{\frac{\pi}{n}}}}=\dfrac{1}{\cos{\left(\frac{\pi}{n}\right)}}$
$\therefore \cos{\left(\dfrac{\pi}{n}\right)}=\dfrac{1}{\sqrt{5}-1}$
On rationalising the denominator, we get 
$ \cos{\left(\dfrac{\pi}{n}\right)}=\dfrac{1}{\sqrt{5}-1}=\dfrac{1}{\sqrt{5}-1}\times\dfrac{\sqrt{5}-1}{\sqrt{5}+1}=\dfrac{\sqrt{5}+1}{4}=\cos{\left(\dfrac{\pi}{5}\right)}$
On comparing $\cos{\left(\dfrac{\pi}{n}\right)}=\cos{\left(\dfrac{\pi}{5}\right)}$ we get $n=5$

The sum of inradius and circumradius of incircle and circumcircle of a regular polygon of side $n$ is

  1. $\dfrac {a}{4}\cot \dfrac {\pi}{2n}$

  2. $a\cot \dfrac {\pi}{n}$

  3. $\dfrac {a}{2} \cot \dfrac {\pi}{2n}$

  4. $a\cot \dfrac {\pi}{2n}$


Correct Option: C
Explanation:

$r + R = \dfrac {a}{2}\cot \dfrac {\pi}{n} + \dfrac {a}{2}cosec \dfrac {\pi}{n}$
$= \dfrac {a}{2} \left (\dfrac {1 + \cos \frac{\pi}{n}}{\sin \frac{\pi}{n}}\right ) = \dfrac {a}{2} \dfrac {2\cos^{2} \dfrac {\pi}{2n}}{2\sin \dfrac {\pi}{2n}\cdot \cos \dfrac {\pi}{2n}}$
$= \dfrac {a}{2} \cot \dfrac {\pi}{2n}$.

The sum of the radii of inscribed and circumscribed circles of an $n$ -sided regular polygon with side equal to one unit is?

  1. $\displaystyle \frac{1}{2}\cot \frac{\pi }{2n}$

  2. $\displaystyle \cot \frac{\pi }{2n}$

  3. $\displaystyle \cot \frac{\pi }{n}$

  4. $\displaystyle \frac{1}{2}\tan \frac{\pi }{2n}$


Correct Option: A
Explanation:

From the figure:
Side of polygon $(AB)=1$
$AO=\dfrac { 1 }{ 2 } $
$\angle O=\dfrac { \pi  }{ 2n } $

In right angled $\triangle COA$ :
$\sin { O } =\dfrac { AC }{ AO } $
$\Rightarrow \sin { \dfrac { \pi  }{ n }  } =\dfrac { 1 }{ 2R } $       ..(1)

$\tan { O } =\dfrac { AC }{ CO } $
$\Rightarrow \tan { \dfrac { \pi  }{ n }  } =\dfrac { 1 }{ 2r } $       ...(2)

From (1) and (2)
$R+r=\dfrac { 1 }{ 2 } \left( \dfrac { 1 }{ \sin { \dfrac { \pi  }{ n }  }  } +\dfrac { 1 }{ \tan { \dfrac { \pi  }{ n }  }  }  \right) $

$\Rightarrow R+r=\dfrac { 1 }{ 2 } \left( \dfrac { 1+\cos { \dfrac { \pi  }{ n }  }  }{ \sin { \dfrac { \pi  }{ n }  }  }  \right) =\dfrac { 1 }{ 2 } \left( \dfrac { 2\cos ^{ 2 }{ \dfrac { \pi  }{ 2n }  }  }{ 2\cos { \dfrac { \pi  }{ 2n }  } \sin { \dfrac { \pi  }{ 2n }  }  }  \right) $

$\Rightarrow R+r=\dfrac { 1 }{ 2 } \cot { \dfrac { \pi  }{ 2n }  } $

Ans: A

- Hide questions