0

Lines in space - class-XII

Attempted 0/31 Correct 0 Score 0

The cartesian equation of the plane which is at a distance of 10 unite from the original and perpendicular to the vector i + 2j -2k is 

  1. x+2y+2z = 30

  2. x - 2y - 2z =30

  3. x - 2y + 2z = 30

  4. x+2y-2z = 30


Correct Option: D

The equation of the plane through the point $(0, -1, -6)$ and $(-2, 9, 3)$ are perpendicular to the plane $x-4y-2z=8$ is

  1. $3x+3y-2z=0$

  2. $x-2y+z=2$

  3. $2x+y-z=2$

  4. $5x-3y=2z=0$


Correct Option: A

The normal form of $2x-2y+z=5$ is

  1. $12x-4y+3z=39$

  2. $\displaystyle \dfrac{-6}{7}x+\dfrac{2}{7}y+\dfrac{3}{7}z=1$

  3. $\displaystyle \dfrac{12}{13}x-\dfrac{-4}{13}y+\dfrac{3}{13}z=3$

  4. $\displaystyle \dfrac{2}{3}x-\dfrac{2}{3}y+\dfrac{1}{3}z=\dfrac{5}{3}$


Correct Option: D
Explanation:

The dr's of the normal to the plane are $(2,-2,1)$.
The dc's will be $\left ( \dfrac{2}{3} , \dfrac{-2}{3} , \dfrac{1}{3} \right)$
Hence, the equation of the plane in the normal form will be,
$ \dfrac{2x}{3} - \dfrac{2y}{3} + \dfrac{z}{3} $ = $ \dfrac{5}{3} $

If a line is given by  $\dfrac{x-2}3 = \dfrac{y+10}5 = \dfrac{z+6}2$,  then which of the following points lies on this line?

  1. $(5,11,0)$

  2. $(3,10,0)$

  3. $(11,5,0)$

  4. $(0,5,11)$


Correct Option: C
Explanation:
Putting $x=11$ and $y=5$ and $z=0$ in the given equation of line, we get
$\begin{array}{l} \dfrac { { x-2 } }{ 3 } =\dfrac { { y+10 } }{ 5 } =\dfrac { { z+6 } }{ 2 }  \\ \dfrac { { 11-2 } }{ 3 } =\dfrac { { 5+10 } }{ 5 } =\dfrac { { 0+6 } }{ 2 }  \\ \dfrac { 9 }{ 3 } =\dfrac { { 15 } }{ 3 } =\dfrac { 6 }{ 2 }  \\ 3=3=3 \end{array}$
therefore $(11,5,0)$ satisfies given equation of line 
hence  $(11,5,0)$ lies on the given line

Option $C$ is the correct answer.

Vector form of plane $2x-z+1=0$ is _________

  1. $F.(2,-1,0)=1$

  2. $F.(2,-1,0)+1=0$

  3. $F.(2,0,-1)+1=0$

  4. $F.(2,0,-1)=1$


Correct Option: C
Explanation:


$2x-z+1=0$
$\therefore$ $2x+0y-1z=-1$
$\therefore$ $(x,y,z).(2,0,-1)=-1$
$\therefore$ $F.(2,0,-1)+1=0$

Find the equation of the plane through the points $(1, 0, -1), (3, 2, 2)$ and parallel to the line $\dfrac{x-1}{1}=\dfrac{y-1}{-2}=\dfrac{z-2}{3}$.

  1. $4x-y-2z=6$

  2. $4x-y-2z=-6$

  3. $4x-y+2z=6$

  4. $4x+y-2z=6$


Correct Option: A
Explanation:

$L:\cfrac { x-1 }{ 1 } =\cfrac { y-1 }{ -2 } =\cfrac { z-2 }{ 3 } \ P(1,0,-1),Q(3,2,2)$

$ \therefore$ Direction of  $\overrightarrow { PQ } =2\hat { i } +2\hat { j } +3\hat { k } $
Plane is parallel to line $L$ & contains $\overrightarrow { PQ } $. (normal to plane $\bot$ to $PQ$ & $L$)
$\therefore \overrightarrow { n } =\left| \begin{matrix} \hat { i }  & \hat { j }  & \hat { k }  \ 2 & 2 & 3 \ 1 & -2 & 3 \end{matrix} \right| =(12)\hat { i } -3\hat { j } +(-6)\hat { k } $
direction ratios of normal are $(4,-1,-2)$
$\therefore$ Equation plane passing through $(1,0,-1)$ and having directions of normal $(4,-1,-2)$.
$4x-y-2z=6$

The equation of the plane passing through the straight line $\dfrac{x-1}{2}=\dfrac{y+1}{-1}=\dfrac{z-3}{4}$ and perpendicular to plane $x+2y +z=12$ is:

  1. $9x+2y-5z+8 =0$

  2. $9x +2y -5z +10=0$

  3. $9x-2y +5z +6=0$

  4. $9x -2y -5z+4=0$


Correct Option: D
Explanation:
Let the DR of the normal of the plane be $<a, b, c>$
Since it passes through a line.
$\therefore$ Normal of the plane must be perpendicular to the line
$\therefore a + 2b + c = 0$ ...... $(1)$ ($\perp$ to another plane)
$2a - b + 4c = 0$ ...... $(2)$
On solving :
$\dfrac{a}{8 + 1} = \dfrac{-b}{4 - 2} = \dfrac{c}{-1 - 4}$
$\Rightarrow \dfrac{a}{9} = \dfrac{b}{-2} = \dfrac{c}{-5}$
$a = 9, b = -2, c = -5$
Any point on the straight line
$(2\alpha + 1, -\alpha - 1, 4\alpha + 3)$
putting $\alpha = 1$
$(3, -2, 7)$
$\therefore$ Equation of the line plane with normal DR $(9, -2, -5)$ and passing through $(3, -2, 7)$
$\therefore 9(x - 3) - 2(y + 2) - 5(z - 7)=0$
$\Rightarrow 9x - 27 - 2y - 4 - 5z + 35 = 0$
$\Rightarrow 9x - 2y - 5z + 4 = 0$

Equation of the plane containing the straight lines $\dfrac{x}{2} = \dfrac{y}{3} = \dfrac{z}{4}$ and perpendicular to the plane containing the straight lines  $\dfrac{x}{3} = \dfrac{y}{4} = \dfrac{z}{2}$ and $\dfrac{x}{4} = \dfrac{y}{2} = \dfrac{z}{3}$

  1. $x + 2y - 2z = 0$

  2. $3x + 2y - 2z = 0$

  3. $x - 2y + z = 0$

  4. $5x + 2y - 4z = 0$


Correct Option: C
Explanation:

Vector normal to plane $P _1$ is $\overrightarrow{n _1}=\begin{vmatrix}\hat{i}&\hat{j}&\hat{k}\3&4&2\4&2&3\end{vmatrix}$


                                                       $=\hat{i}(12-4)-\hat{j}(9-8)+\hat{k}(6-8)$
                                                       $=8\hat{i}-\hat{j}-10\hat{k}$
Plane $P _2$ is perpendicular to this plane and it leaking the line $\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{2}{4}$

$\overrightarrow{n _2}$ is normal to

$\overrightarrow{n _2}=\begin{vmatrix}\hat{i}&\hat{j}&\hat{k}\8&-1&-10\2&3&4\end{vmatrix}$

       $=\hat{i}(-4+30)-\hat{j}(32+20)+\hat{k}(24+2)$

       $=26\hat{i}-52\hat{j}+26\hat{k}$

This plane $T _2$ having normal $n _2$ passing through $(0,0,0)$ is $26x-52y+26z=0$ $i.e.$ $x-2y+z=0$

Let a,b,c be any real numbers.Suppose that there are real numbers x,y,z not all zero such that $x=cy+bz , y=az+cx$ and $z=bx+ay$, then ${a^2} + {b^2} + {c^2} + 2abc $ is equal to

  1. 2

  2. -1

  3. 0

  4. 1


Correct Option: D
Explanation:
$a, b, c$ real numbers

$x, y, z$ real numbers not all zero

$x=cy+bz\rightarrow x-cy-bz=0 --- (1)$

$y=az+cx\rightarrow cx+y-az=0---(2)$

$z=bx+cy\rightarrow -bx-ay+z=0 --- (3)$

The system of equation have trivial solution then

$\begin{vmatrix} 1 & -c & -b \\ c & -1 & a \\ b & a & -1 \end{vmatrix}=0$

$\Rightarrow 1(1-a^{2})+c(-c-ab)-b(a+b)=0$

$\Rightarrow a^{2}+b^{2}+c^{2}+2abc=1$

$D$ is correct

The direction cosines of the normal to the plane $x+2y-3z+4=0$ are

  1. $\cfrac { -1 }{ \sqrt { 14 } } ,\cfrac { -2 }{ \sqrt { 14 } } ,\cfrac { 3 }{ \sqrt { 14 } } $

  2. $\cfrac { 1 }{ \sqrt { 14 } } ,\cfrac { 2 }{ \sqrt { 14 } } ,\cfrac { 3 }{ \sqrt { 14 } } $

  3. $\cfrac { -1 }{ \sqrt { 14 } } ,\cfrac { 2 }{ \sqrt { 14 } } ,\cfrac { 3 }{ \sqrt { 14 } } $

  4. $\cfrac { 1 }{ \sqrt { 14 } } ,\cfrac { -2 }{ \sqrt { 14 } } ,\cfrac { -3 }{ \sqrt { 14 } } $


Correct Option: A
Explanation:

Clearly, the normal to the plane has DR's $\equiv(1, 2, -3)$

$\therefore $ DCs  are $\equiv \pm \left(\dfrac{1}{\sqrt{1^2 + 2^2 + (-3)^2}} , \dfrac{2}{\sqrt{14}} , \dfrac{-3}{\sqrt{14}}\right)$
$= \pm \left(\dfrac{1}{\sqrt{14}} , \dfrac{2}{\sqrt{14}} , \dfrac{-3}{\sqrt{14}} \right)$
$\therefore A$

The Cartesian equation of the plane $\vec r=(1+\lambda-\mu)\hat i+(2-\lambda)\hat j+(3-2\lambda+2\mu)\hat k$ is-

  1. $2x+y=5$

  2. $2x-y=5$

  3. $2x+z=5$

  4. $2x-z=5$


Correct Option: C
Explanation:

Given, $\vec{r} = (1+\lambda-\mu)\hat{i}+(2-\lambda)\hat{j}+(3-2\lambda+2\mu)\hat{k}$
$\Rightarrow x\hat{i}+y\hat{j}+z\hat{k} = (1+\lambda-\mu)\hat{i}+(2-\lambda)\hat{j}+(3-2\lambda+2\mu)\hat{k}$
Comparing coefficient, we get
$ 1+\lambda-\mu = x, 2-\lambda=y, 3-2\lambda+2\mu=z$
$\Rightarrow\lambda = 2-y, \mu=1+\lambda - x = 3-y-x$
Eliminating $\mu$ and $\lambda$, we get
$2x+z=5$ which is required equation of plane in cartesian form.

The equation of a plane which passes through the point of intersection of lines $\dfrac {x-1}{3}=\dfrac {y-2}{1}=\dfrac {z-3}{2}$, and $\dfrac {x-3}{1}=\dfrac {y-1}{2}=\dfrac {z-2}{3}$ and at greatest distance from point $(0, 0, 0)$ is-

  1. $4x+3y+5z=25$

  2. $4x+3y+5z=50$

  3. $3x+4y+5z=49$

  4. $x+7y-5z=2$


Correct Option: B
Explanation:

Any point on the first line is $P\left( 3\lambda +1,\lambda +2,2\lambda +3 \right) $
and on the second line is $Q\left( u+3,2u+1,3u+2 \right) $
$P$ and $Q$ represent the same point if $\lambda =u=1$
And the point of intersection of the given line is $P\left( 4,3,5 \right) $
The plane given in (a),(b),(c) and (d) all pass through $P$.
The plane at greatest distance is one which is at a distance equalt to $OP$ from the origin.
So, the distance of the plane from origin is $\sqrt { { 4 }^{ 2 }+{ 3 }^{ 2 }+{ 5 }^{ 2 } } =\sqrt { 50 } $
The equation of plane is $4x+3y+5z=50$

Let $A (1, 1, 1), B(2, 3, 5)$ and $C(-1, 0, 2)$ be three points, then equation of a plane parallel to the plane $ABC$ and at the distance $2$ is

  1. $2x-3y+z-2\sqrt {14}=0$

  2. $2x-3y+z-\sqrt {14}=0$

  3. $2x-3y+z+2=0$

  4. $2x-3y+z-2=0$


Correct Option: A
Explanation:

$\vec{AB}=i+2j+4k$
$\vec{BC}=3i+3j+3k$

Hence, $\vec{AB}\times\vec{BC}=3(2i-3j+k)$
Now the unit normal of the plane of $ABC$ will be 
$=\dfrac{2i-3j+k}{\sqrt{14}}$
The required plane is parallel to the plane $ABC$.
Hence, its unit normal will be parallel to the normal of $ABC$.
Therefore, the equation of the required plane is 
$r.(\dfrac{2i-3j+k}{\sqrt{14}})=d$
$2x-3y+z=d\sqrt{14}$
Now $d$ is $2$.
Hence, the equation is $2x-3y+z=2\sqrt{14}$.

The plane which passes through the point $(3, 2, 0)$ and the line $\dfrac {x-3}{1}=\dfrac {y-6}{5}=\dfrac {z-4}{4}$ is:

  1. $x-y+z=1$

  2. $x+y+z=5$

  3. $x+2y-z=1$

  4. $2x-y+z=5$


Correct Option: A

Equation of the plane passing through the points $(2, 2, 1)$ and $(9, 3, 6)$, and perpendicular to the plane $2x+6y+6z-1=0$ is-

  1. $3x+4y+5z=9$

  2. $3x+4y-5z=9$

  3. $3x-4y+5z=9$

  4. None of the above.


Correct Option: B
Explanation:

Equation of plane passes through $(2,2,1)$ is given by,
$a(x-2)+b(y-2)+c(z-1) = 0.......(A)$
Given it also passes through $(9,3,6)$
$\Rightarrow 7a+b+5c=0 ......(1)$
and this plane is perpendicular to plane $2x+6y+6z-1=0$
$\Rightarrow 2a+6a+6c=0 .....(2)$
Solving (1) and (2), we get $ a= \dfrac{-3a}{5}, b = \dfrac{-4a}{5}$
Putting these values in (A) our required plane is,
$3x+4y-5z=9$

The cartesian equation of the plane $\overrightarrow { r } =\left( 1+\lambda -\mu  \right) i+\left( 2-\lambda  \right) j+\left( 3-2\lambda +2\mu  \right) k$ is:

  1. $2x+y=5$

  2. $2x-y=5$

  3. $2x+z=5$

  4. $2x-z=5$


Correct Option: C
Explanation:

We have $\overrightarrow { r } =\left( 1+\lambda -\mu  \right) i+\left( 2-\lambda  \right) j+\left( 3-2\lambda +2\mu  \right) k$

$\Rightarrow \overrightarrow { r } =\left( i+2j+k \right) +\lambda \left( i=j-2k \right) +\mu \left( -i+2k \right) $
which is a plane through $\overrightarrow { a } =i+2j+3k$ and parallel to the vectors
$\overrightarrow { b } =i-j-2k$ and $\overrightarrow { c } =-i+2k$
Therefore, it is perpendicular to the vector
$\overrightarrow { n } =\overrightarrow { b } \times \overrightarrow { c } =-2i-k$
Hence, its vector equation is 
$\left( \overrightarrow { r } -\overrightarrow { a }  \right) .\overrightarrow { n } =0\Rightarrow \overrightarrow { r } .\overrightarrow { n } =\overrightarrow { a } .\overrightarrow { n } \ \Rightarrow \overrightarrow { r } .\left( -2i-k \right) =-2-3\Rightarrow \overrightarrow { r } \left( 2i+k \right) =5$
So, the cartesian equation is
$\left( xi+yj+zk \right) .\left( 2i+k \right) =5\Rightarrow 2x+z=5$

If $lx+my+nz=p$ is equation of plane in normal form, then :

  1. $l^2+m^2+n^2=1$

  2. l, m , n are d.c's of a normal to the plane

  3. p > 0

  4. All of these


Correct Option: A

The equation of the plane through the points $(2,3,1)$ and $(4,-5,3)$ and parallel to $x$-axis is

  1. $x-z-1=0$

  2. $4x+y-11=0$

  3. $y+4z-7=0$

  4. None of these


Correct Option: C
Explanation:
The line segment passing through $(2,3,1)$ and $(4,-5,3)$ is given by $2i-8j+2k$. 
Hence, the normal to the plane is given by $(2i-8j+2k) \times i=2j+8k$. 
Hence, the equation of plane is given by $2y+8z+d=0$. 
Since it passes through $(2,3,1)$ we get $6+8+d=0 \Rightarrow d=-14$. 
Thus, the equation of plane is given by $y+4z-7=0$.  

Equation of the plane passing through the point $(1, 1, 1)$ and perpendicular to each of the planes $x+ 2y+ 3z= 7$ and $2x- 3y +4z= 0$, is

  1. $17x- 2y +7z= 12$

  2. $17x+ 2y -7z= 12$

  3. $17x+ 2y +7z= 12$

  4. $17x- 2y -7z= 12$


Correct Option: B
Explanation:

Let $ax+by+cz=1$ be the desired plane.
Since, it is perpendicular to $x+2y+3z=7$ & $2x-3y+4z=0$
Therefore, $a+2b+3c=0$        .... (1)
and $2a-3b+4c=0$       ...(2)
and it passes through $(1,1,1)$
Therefore, $a+b+c=1$      ...(3)
Solving $(1),(2)$ and $(3)$ simultaneously, we get

$a=\dfrac {17}{12}$, $b=\dfrac {1}{6}$, $c=-\dfrac {7}{12}$
Therefore, desired plane is $17x+2y-7z=12$

Ans: B

The cartesian form of the plane 
$ { r } =(s-2t)\hat { i+(3-t)\hat { j+(2s+t)\hat { k }  }  } $ is 

  1. $ 2 x-5 y-z-15=0$

  2. $2 x-5 y+z-15=0$

  3. $2 x-5 y-z+15+0$

  4. $2 x+5 y-z+15=0$


Correct Option: C
Explanation:

Since $\overrightarrow{r}=x\hat{i}+y\hat{j}+z\hat{k}$ is the proof any vector $(x,y,z)$on the plane. The given equation can be written as.

$x\hat{i}+y\hat{j}++z\hat{k}=(s—2t)\hat{i}+(3-t)\hat{j}+(2s+t)\hat{k}\\x=(s-2t)\quad y=(3-t)\quad z=2s+t$

Similarly We get $x-2y=s-6$ and $y+z=3+2s$

Now eliminating $s$ we get $2(x-2y)-(y+z)=-15$

$2x-5y-z+15=0$ is the required form of the equation.

The general equation of plane which is parallel to x-axis is

  1. $ax+by+cz+d=0, a\neq 0,b\neq 0,c\neq 0$

  2. $by+ax+d=0, a\neq 0,b\neq 0$

  3. $ax+cz+d=0, a\neq 0.c\neq 0$

  4. $by+cz+d=0, b\neq 0,c\neq 0$


Correct Option: D
Explanation:
Generally a plane in 3-space has the equation

$ax + by + cz +d = 0,$

here, it is parallel to $x$ axis

hence the equation becomes,
$by + cz +d = 0,$

where at least one of the numbers a, b, c and d must be nonzero
finally the equation becomes,

$by +cz+d =0,b≠0, c≠0.$

Equation of plane through $(2, 1,4)$ and having $\mathrm{d}.\mathrm{c}$'s of its normal $\alpha,\ \beta,\ \gamma$ is

  1. $\alpha x+\beta y+\gamma z =2\alpha+\beta+4\gamma$

  2. $\displaystyle \dfrac{x-2}{\alpha}+\dfrac{y-1}{\beta}+\dfrac{z-4}{\gamma}=0$

  3. $\alpha x+\beta y+\gamma z =1$

  4. $\displaystyle \dfrac{\alpha x}{2}+\dfrac{\beta y}{1}+\dfrac{\gamma z}{4}=0$


Correct Option: A
Explanation:

Since, the direction ratios of the normal are $ \alpha , \beta , \gamma $
The equation of the plane will be of the form, $ \alpha x + \beta y + \gamma z  = d$
And the plane passes through the point $(2,1,4)$.
Hence, equation of plane is $ \alpha x + \beta y + \gamma z $ = $ 2 \alpha + \beta  + 4 \gamma  $.

If the equation of the plane passing through the points $(1,2,3)$, $(-1,2,0)$ and perpendicular to the $zx$ - plane is $ax + by + cz + d$ $=$ $ 0$ $(a>0)$, then

  1. $a=0$ and $c=0$

  2. $a+d=0$

  3. $c+d-5=0$

  4. $a+c+d-4=0$


Correct Option: D

A plane $\Pi$ passes through the point $(1,1,1)$. If $b,c, a$ are the direction ratios of a normal to the plane, where $a, b, c (a<b<c)$ are the prime factors of $2001$, then the equation of the plane $\pi$ is

  1. $29x+31y+3z=63$

  2. $23x+29y-29z=23$

  3. $23x+29y+3z=55$

  4. $31x+27y+3z=71$


Correct Option: C
Explanation:
Sol. By verification $2001=23 \times29 \times3$
$\therefore 23x+29y+3z=55$

The equation of the plane passing through the origin and containing the lines whose d.cs are proportional to $1,-2,2$ and $2,3,-1$ is:

  1. $x-2y+2z=0$

  2. $2x+3y-z=0$

  3. $x+5y-3z=0$

  4. $4x-5y-7z=0$


Correct Option: D
Explanation:

Equation of plane passing through origin is given by,
$ax+by+cz=0$
Also this line containing line whose d.cs are $(1,-2,2)$ and $(2,3,-1)$
$\Rightarrow a-2b+2c=0$ and $2a+3b-c=0$
Solving these, $ b= \dfrac{5c}{7}, a = -\dfrac{4c}{7}$
Hence, plane equation is
$4x-5y-7z=0$

The vector equation of the plane passing through the planes $r.(i+j+k)=6$ and $r.(2i+3j+4k)=-5$ and the point $(1,1,1)$ is

  1. $r.(20i+23j+26k) = 69$

  2. $r.(2i+23j+26k) = 69$

  3. $r.(2i+2j+3k) = 69$

  4. $r.(20i+3j+26k) = 69$


Correct Option: A
Explanation:

The vector equation of plane passing through the intersection of planes $\vec r.\vec {n _1}=d _1$ and $\vec r.\vec {n _2}$ and also through the point $x _1,y _1,z _1$ is 


$\vec r.(\vec {n _1}+\lambda \vec {n _2})=d _1+\lambda d _2$

According to question plane passes through 

$\vec r.(\hat i+\hat j+\hat k)=6$

comparing it with $\vec r.\vec {n _1}=d _1$

$\vec {n _1}=\hat i+\hat j+\hat k$
And 
$d _1=6$
Now, other plane by it also passes 

$\vec r.(2\hat i+3\hat j+4\hat k)=-5$

$=\vec r.(-2\hat i-3\hat j - 4\hat k)=5$
Comparing it with $\vec r.\vec {n _2}=d _2$

$\vec {n _2}=-2\hat i-3\hat j-4\hat k$
And 
$d _2=5$
Now, equation of the required plane 

$\vec r.[(\hat i+\hat j+\hat k)-\lambda (2\hat i+3\hat j+4\hat k)]=5\lambda +6$   ----- (i)
Now, 
Putting $\vec r=x\hat i+y\hat j+z\hat k$

$(x\hat i+y\hat j+z\hat k).[(\hat i+\hat j+\hat k)-\lambda (2\hat i+3\hat j+4\hat k)]=5\lambda +6$

$(1-2\lambda)x+(1-3\lambda)y+(1-4\lambda)z=5\lambda +6$   ----   (ii)

Since it passes through $(1,1,1)$ 
Therefore,

$(1-2\lambda)1+(1-3\lambda)1+(1-4\lambda)1=5\lambda +6$
Hence 
$\lambda =\dfrac{-3}{14}$

Put the value of $\lambda $ in (i)

$\vec r.[(\hat i+\hat j+\hat k)-(\dfrac{-3}{14}) (2\hat i+3\hat j+4\hat k)]=5(\dfrac{-3}{14}) +6$

$\vec r.[(1+\dfrac{6}{14})\hat i+(1+\dfrac{9}{14})\hat j+(1+\dfrac{12}{14}\hat k)]=\dfrac{69}{14}$

$\vec r.(20\hat i + 23\hat j + 26\hat k) = 69$

So, the required equation of plane is $\vec r.(20\hat i + 23\hat j + 26\hat k) = 69$

The cartesian equation of plane $\bar{r}.(2, -3, 4) = 5$ is _____

  1. $3y - 2x -4z + 5 =0$

  2. $2x - 3y + 4z =0$

  3. $2x - 3y + 4z +5 =0$

  4. $\displaystyle \frac{x - 1}{2} = \frac{y-1}{-3} = \frac{z-1}{4}$


Correct Option: A
Explanation:

$\vec{r}=x\hat{i}+y\hat{j}+z\hat{k}$

$\vec{r}.(2\hat{i}-3\hat{j}+4\hat{k})=5$
$\implies 2x-3y+4z=5$
$\implies 3y-2x-4z+5=0$

The equation(s) of the plane,  which is/are equally inclined to the lines $\dfrac {x-1}{2}=\dfrac {y}{-2}=\dfrac {z+2}{-1}$ and $\dfrac {x+3}{8}=\dfrac {y-4}{1}=\dfrac {z}{-4}$ and passing through the origin is/are

  1. $14x-5y-7z=0$

  2. $2x+7y-z=0$

  3. $3x-4y-z=0$

  4. $x+2y-5z=0$


Correct Option: A,B
Explanation:

The planes equally inclined to both the lines will have their normals along the angle bisectors of the two lines.  
The unit vector along the first line is $ \dfrac{2 \hat{i} -2 \hat{j} -\hat{k} } { 3 }$.
The unit vector along the second line is  $ \dfrac{ 8\hat{i}+ \hat{j} -4\hat{k} }{ 9} $.

The vectors along the angle bisectors can be written as : 
$ (\dfrac{2}{3} +\dfrac{8}{9}) \hat{i}  + ( \dfrac{-2}{3} + \dfrac{1}{9} )\hat{j} + (\dfrac{-1}{3} + \dfrac{-4}{9} )\hat{k}  = \dfrac{1}{9} (14\hat{i} -5\hat{j} -7\hat{k}) =0 $ 
and 
$ (\dfrac{2}{3} -\dfrac{8}{9}) \hat{i}  + ( \dfrac{-2}{3} - \dfrac{1}{9} )\hat{j} + (\dfrac{-1}{3} - \dfrac{-4}{9} )\hat{k} = \dfrac{1}{9} (-2\hat{i} -7\hat{j} +\hat{k} ) $.

Hence, options A and B represent equations of planes which have normals along the angle bisector and pass through the origin. 

A plane through the line $\displaystyle \frac{x - 1}{1} = \frac{y + 1}{-2} = \frac{z}{1}$ has the equation

  1. $\displaystyle x + y + z = 0$

  2. $\displaystyle 3x + 2y - z = 1$

  3. $\displaystyle 4x + y - 2z = 3$

  4. $\displaystyle 3x + 2y + z = 0$


Correct Option: A,C
Explanation:
A plane eqn through the line $\dfrac{x-1}{1}=\dfrac{y+1}{-2}=\dfrac{z}{1}$      ...(i)
is given by $A(x-1) +B(y+1)+Cz=0$       ...(ii)
where $A,B,C$  are direction ratio which will perpence to line 
hence 
$A-2B+C=0$
so possible volves of $(A,B,C) $ are $(1,1,1)$ and $(4,1,-2)$
so eq of plane from (ii)
$\Rightarrow  1(x-1)+1(y+1)+1(z)=0$
$\Rightarrow x-1+y+1+z=0$
$\Rightarrow x+y+z=0$
          $ or $
$4(x-1)+(y+1)-2z=0$
$\Rightarrow 4x-4+y+1-2z=0$
$\Rightarrow 4x+y-2z-3=0$
$4x+y-2z=3$
So, here eq of plane is $x+y+z=0$ 
or $4x+y-2z=3$

Equation of a plane through the line $\displaystyle \frac{x\, -\, 1}{2}= \frac{y\, -\, 2}{3}= \frac{z\, -\, 3}{4}$ and parallel to a coordinate axis is

  1. $4y :-:3z:+:1 =:0$

  2. $2x:-:z:+:1 =:0$

  3. $3x:-:2y:+:1 =:0$

  4. $2x:+:3y:+:1=:0$


Correct Option: A,B,C
Explanation:
General equation of a plane is
$ax+by+cz+d=0$.........where a,b,c,d are constants taking any value

Let us consider the plane parallel to x-axis. 

Hence, the equation of the plane can be written as $ay+bz =1 $. 

The plane passes through $(1,2,3)$ and the normal to the plane is perpendicular to the vector along the line. 

Hence, 
$ 2a+3b =1$ and $ 3a+4b =0 $

On solving we get, $a= -4$ and $b=3$. 

Hence, $-4y+3z =1$ or $4y-3z +1 =0 $.

Let us consider the plane parallel to the y-axis.

Hence, the equation of the plane can be written as: 

$ cx+dz = 1 $

$c+3d =1 $ and $ 2c+4d =0 $. 

$\Rightarrow c = -2 $ and $d=1$ 

Hence, the equation of the plane is $ 2x-z+1 =0 $.

Similarly, we can find the equation for the plane parallel to the z-axis. The equation of the plane can be written as $ex+fy = 1 $.

After substituting the value of the point $(1,2,3)$ and using the information of the normal to the plane being perpendicular to the line, we get the equation of the plane as $ 3x-2y+1 =0$.

Hence, all three options are correct.

Consider the plane passing through the points $A(2, 2, 1), B(3, 4, 2)$ and $C(7, 0, 6)$.
Which one of the following points lies on the plane?

  1. $(1, 0, 0)$

  2. $(1, 0, 1)$

  3. $(0, 0, 1)$

  4. None of the above


Correct Option: A
Explanation:

The plane passing through the points $A(2,2,1),B(3,4,2) and C(7,0,6)$.


We can get two vectors in the plane by subtracting pairs of points in the
plane :
$[ 2, 2, 1 ] - [ 3 ,4, 2 ] = [ -1, -2, -1 ]$

$[ 7 ,0, 6 ] - [ 3, 4 ,2 ] = [ 4, -4 ,4 ]$

The cross product of these two vectors will be in the unique direction orthogonal to both, and hence in the direction of the normal vector
to the plane


$ [ -1 ,-2, -1 ] \times  [ 4 ,-4 ,4 ] = [ 1, 0 ,0 ] $

hence the points lies on the plane of $(1 , 0 , 0)$



- Hide questions