0

Telescopic summation for infinte series - class-XI

Description: telescopic summation for infinte series
Number of Questions: 29
Created by:
Tags: binomial theorem, sequence and series maths
Attempted 0/29 Correct 0 Score 0

If y= -1  then the value of 
$\displaystyle 1+\frac{1}{y}+\frac{1}{y^{2}}+\frac{1}{y^{3}}+\frac{1}{y^{4}}+\frac{1}{y^{5}}$ is

  1. -1

  2. 0

  3. 1

  4. 2


Correct Option: B
Explanation:

$1+\frac{1}{y}+\frac{1}{y^{2}}+\frac{1}{y^{3}}+\frac{1}{y^{4}}+\frac{1}{y^{5}}$

Put the value y=-1
Then $1+\frac{1}{-1}+\frac{1}{(-1)^{2}}+\frac{1}{(-1)^{3}}+\frac{1}{(-1)^{4}}+\frac{1}{(-1)^{5}}= 1-1+1-1+1-1= 3-3=0$

Find the sum of the series: 2 + 4 + ......... + 80 using Gauss method, where n = 100

  1. 4,200

  2. 4,100

  3. 4,300

  4. 4,400


Correct Option: B
Explanation:

Sum of 'n' series using Gauss method is
$S _n = \dfrac{n}{2} $  (First term + Last term)
$= \dfrac{100}{2} (2 + 80)$
$= 50 (82)$
$S _{100} = 4,100$

999, 730, 511, 344, 215, ....

  1. 123

  2. 126

  3. 125

  4. 130


Correct Option: B
Explanation:

The rule is $\displaystyle 10^{3}-1$, $\displaystyle 9^{3}+1$, $\displaystyle 8^{3}-1$, $\displaystyle 7^{3}+1$, $\displaystyle 6^{3}-1$, $\displaystyle 5^{3}+1$ The number is 126

Find the Odd one among : 1, 4, 27, 16, 25, 36

  1. 4

  2. 27

  3. 16

  4. 25


Correct Option: B
Explanation:

The numbers are written as $\displaystyle 1^{2}$, $\displaystyle 2^{2}$, $\displaystyle 3^{2}$, $\displaystyle 4^{2}$, $\displaystyle 5^{2}$, $\displaystyle 6^{2}$ etc It should be 9 in place of 27

Find the sum of the series: 1 + 2 + 3 + .......... + 50 using Gauss method.

  1. 1,275

  2. 1,200

  3. 1,100

  4. 2,000


Correct Option: A
Explanation:

Sum of 'n' series using Gauss method is,
$S _n = \dfrac{n(n + 1)}{2}$
$\therefore$ Given n = 50
So, $\dfrac{50(50 + 1)}{2}$
$S _{50} = 1,275$

Find the sum of the following geometric series:
$ \sqrt{7}, \sqrt{21}, 3\sqrt{7},...$ to n terms

  1. $ \sqrt{7}\left ( \dfrac{3^{-n/2}-1}{\sqrt{3}-1} \right )$

  2. $ \sqrt{6}\left ( \dfrac{3^{n/2}-1}{\sqrt{3}-1} \right )$

  3. $ \sqrt{7}\left ( \dfrac{3^{n/2}-1}{\sqrt{3}-1} \right )$

  4. $ \sqrt{5}\left ( \dfrac{3^{n/2}-1}{\sqrt{3}-1} \right )$


Correct Option: C
Explanation:

Let $ S _n$ denote the sum of n terms of the G.P. $\sqrt{7}, \sqrt{21}, 3\sqrt{7}, ...,$ 


Cleraly, the given series is a $G.P.$ with first term$=a=\sqrt7$ and common ratio$=r=\sqrt 3$

Then,
$ S _n = \sqrt{7} \left { \dfrac{\left ( \sqrt{3} \right )^{n}-1}{\sqrt{3}-1} \right } = \sqrt{7} \left ( \dfrac{3^{n/2}-1}{3^{1/2}-1} \right )$

${\sin ^2}{{\text{2}}^{\text{o}}} + {\sin ^2}{{\text{4}}^{\text{o}}} + \;{\sin ^2}{{\text{6}}^{\text{o}}} + \;.... + \;{\sin ^2}{\text{9}}{{\text{0}}^{\text{o}}}$ is equal to

  1. $22$

  2. $23$

  3. $44$

  4. $45$


Correct Option: B
Explanation:

Now,

${\sin ^2}{{\text{2}}^{\text{o}}} + {\sin ^2}{{\text{4}}^{\text{o}}} + \;{\sin ^2}{{\text{6}}^{\text{o}}} + \;.... + \;{\sin ^2}{\text{9}}{{\text{0}}^{\text{o}}}$
$=({\sin ^2}{{\text{2}}^{\text{o}}} + {\sin ^2}{{\text{4}}^{\text{o}}} + \;{\sin ^2}{{\text{6}}^{\text{o}}} + \;...+\sin^2 44^o)+(\sin^2 46^o+... +\sin^2 98^o)+ \;{\sin ^2}{\text{9}}{{\text{0}}^{\text{o}}}$
$=({\sin ^2}{{\text{2}}^{\text{o}}} + {\sin ^2}{{\text{4}}^{\text{o}}} + \;{\sin ^2}{{\text{6}}^{\text{o}}} + \;...+\sin^2 44^o)+(\cos^2 44^o+... +\cos^2 2^o)+ 1$ [ Since $\sin^2 x^o=\cos^2 (90^o-x^o)$]
$=(\sin^2 2^o+\cos^2 2^o)+(\sin^2 4^o+\cos^2 4^o)+......+(\sin^2 44^o+\cos^2 44^o)+1$
$=1+1+.....+1(22\text{th})+1$
$=22+1$
$=23$.

Find the missing terms :- .........., .........., 8, .........., -1

  1. 16, 10 and 2

  2. 17, 12 and 3

  3. 17, 12.5 and 3.5

  4. 1, 2 and 3


Correct Option: C
Explanation:

Third term, $a _3 = 8$
Fifth term, $a _5 = - 1$
we know that, $a _n = a + (n - 1) d$
$a _3 = a + (3 - 1) d$
$a _3 = a + 2d $     ...... (1)
$a _5 = a + (5 - 1) d$
$-1 = a + 4d $   ....... (2)
comparing equation (1) & (2)
$8    =   a    +   2d$     .... (1)
$-1   =   a    +   4d$     .... (2)
 (+)    (-)    (-)
-------------------
   $a = - 2d$
$d = - 4.5 $
Put $d = -4.5 $ in equation (1)
$8 = a + 2 (- 4.5)$
$8 = a - a$
$a = 17$
$\therefore a _2 = 17 + (2 - 1) d$
$= 17 + 1 (-4.5)$
$a _2 = 12.5$
$a _4 = 17 + (4 - 1) (-4.5)$
$a _4 = 3.5$
The missing terms are 17, 12.5 and 3.5

If the sum of the first n integers is 15. What is n? (use Gauss method)

  1. 7, 5

  2. 6, -5

  3. 3, -5

  4. 2, 0


Correct Option: B
Explanation:

Using Gauss formula,
$S _n = \dfrac{n}{2} (n + 1)$
$15 = \dfrac{n}{2} (n + 1)$
$30 = n (n + 1)$
$30 = n^2 + n$   ....... (1)
By factorization we can write equation (1) as
$n^2 - 6n + 5n - 30 = 0$
$n(n - 6) + 5 (n - 6) = 0$
$n = 6, - 5$
$\therefore$ The n integers will start from -5 to 6.

Find the sum of the first 100 terms -5, -4, -3, -2, -1, 0, 1, 2 ............. using Gauss method

  1. 4,400

  2. 4,100

  3. 4,200

  4. 4,450


Correct Option: D
Explanation:

Given that $a = -5, n = 100, a _n =?, d = 1$
we know that Gauss formula is, $S _n = \dfrac{n}{2}$   [First term + Last term]
To find nth term,
$a _n = a + (n - 1) d$
$a _{100} = - 5 + (100 - 1)1$
$= - 5 + 99$
$a _{100} =94$
$S _n = \dfrac{100}{2} [-5 + 94]$
$= 50 [89]$
$S _{100} = 4,450$

Apply Gauss method to find which term of the A.P. 2, 4, 6, 8 ..... is 108?

  1. 51

  2. 52

  3. 53

  4. 54


Correct Option: D
Explanation:

Gauss formula for nth term of the A.P. is $a _n = a + (n - 1) d$
Given: $a = 2, d= 2, a _n = 108$
$108 = 2 + (n - 1) 2$
$108 - 2 = 2n - 2$
$106 + 2 = 2n$
$N = \dfrac{108}{2} = 54$

Find the sum of first 31 terms of an A.P. whose third term is 12 and fourth term is 16.

  1. 1,983

  2. 1,984

  3. 1,985

  4. 1,986


Correct Option: B
Explanation:

Given that, $a _3 = 12; a _4 = 16$
Common difference, $d = a _4 - a _3 = 16 - 12 = 4$
$a _3 - a _2 = d$
$12 - 4 = a _2 $ $\Rightarrow  8$
$d = a _2 - a _1$ 
$a = 4$
We know the formula,
$s _n = \dfrac{n}{2} [2a + (n - 1)d]$
$S _{31} = \dfrac{31}{2} [2 \times 4 + (31 - 1)4]$
$= 15.5 [8 + 30 \times 4]$
$=15.5 [128]$
$S _{31} = 1,984$

The sum of the first 12 terms is 100. The first term is 20. Find the last term. (use Gauss method)

  1. $\dfrac{-20}{6}$

  2. $\dfrac{-10}{6}$

  3. $\dfrac{-15}{5}$

  4. $\dfrac{-30}{2}$


Correct Option: A
Explanation:

Given that $S _n = 100, n = 12, a = 20$. fast term = ?
we know that, $S _n = \dfrac{n}{2}$  [First term + Last term]
$100 = \dfrac{12}{2}$   [20 + Last term]
$100 = 120 + 6 (\text{Last term})$
Last term $= \dfrac{-20}{6}$

Select the correct alternative from the given ones that will complete the series.
$0, 7, 26, 63, 124, ?$

  1. $251$

  2. $125$

  3. $215$

  4. $512$


Correct Option: C
Explanation:

$\underset {(1^{3} - 1)}{0}\rightarrow \underset {(2^{3} - 1)}{7}\rightarrow \underset {(3^{3} - 1)}{26}\rightarrow \underset {(4^{3} - 1)}{63}\rightarrow \underset {(5^{3} - 1)}{124} \rightarrow \underset {(6^{3} - 1)}{215}$.

Find the first term. The sum of the first 100 terms is 1,200. The last term is 150. (use Gauss method)

  1. 126

  2. -126

  3. 125

  4. -125


Correct Option: B
Explanation:

Using Gauss method,
$S _n = \dfrac{n}{2} $   [First term + Last term]
$1,200 = \dfrac{100}{2} [a _1 + 150]$
$1,200 = 50a _1 + 7,500$
$1,200 - 7,500 = 50 a _1$
$a _1 = - 126$

Given $a _1 = 100, a _n = 50$ and $n = 200$. Find their sum using Gauss method.

  1. 15,000

  2. 14,000

  3. 11,000

  4. 12,000


Correct Option: A
Explanation:

Given; $a = 100, a _n = 50, n = 200$
Using Gauss formula,
$S _n = \dfrac{n}{2} $   [First term + Last term]
$= \dfrac{200}{2} [100 + 50]$
$S _n = 15,000$

The famous mathematician associated with finding the sum of the first 100 natural numbers is


  1. Pythagoras

  2. Newton

  3. Gauss

  4. Euclid


Correct Option: C
Explanation:

Guass found the sum of first 100 natural numbers.

Use Gauss method to find which term of the A.P. 1, 3, 5, 7 ......... is 153?

  1. 77

  2. 76

  3. 75

  4. 74


Correct Option: A
Explanation:

Gauss formula for nth term of the A.P. is $a _n = a + (n - 1) d$
Given; $a = 1, d= 2 , a _n = 154$
$153 = 1 + (n - 1) 2$
$153 - 1 = 2n - 2$
$153 - 1 + 2 = 2n$
$n = \dfrac{154}{2} = 77$

13, 17, 33, 97, 353,....

  1. 1377

  2. 653

  3. 712

  4. 1273


Correct Option: A
Explanation:

Add to each number 4, $\displaystyle 4^{2}$, $\displaystyle 4^{3}$,$\displaystyle 4^{4}$, $\displaystyle 4^{5}$, i.e. $4, 16, 64, 256, 1024$ etc Next number $= 353 + 1024 = 1377$

The value of ${ 1 }^{ 2 }.{ _{  }^{ 20 }{ C } } _{ 1 }+{ 2 }^{ 2 }.{ _{  }^{ 20 }{ C } } _{ 2 }+{ 3 }^{ 2 }.{ _{  }^{ 20 }{ C } } _{ 3 }+.....{ (20) }^{ 2 }.{ _{  }^{ 20 }{ C } } _{ 20 }$ is

  1. $210\times { 2 }^{ 17 }$

  2. $420\times { 2 }^{ 17 }$

  3. $420\times { 2 }^{ 87 }$

  4. $210\times { 2 }^{ 87 }$


Correct Option: C
Explanation:

$S={ 1 }^{ 2 }.{ _{  }^{ 20 }{ C } } _{ 1 }+{ 2 }^{ 2 }.{ _{  }^{ 20 }{ C } } _{ 2 }+{ 3 }^{ 2 }.{ _{  }^{ 20 }{ C } } _{ 3 }+.....{ (20) }^{ 2 }.{ _{  }^{ 20 }{ C } } _{ 20 }=\sum _{ r=1 }^{ 20 }{ { r }^{ 2 } } .{ _{  }^{ 20 }{ C } } _{ r }$
$=\sum _{ r=1 }^{ 20 }{ { r }^{  } } (r.{ _{  }^{ 20 }{ C } } _{ r })\=20\sum _{ r=1 }^{ 20 }{ { r }^{ 19 } } .{ _{  }^{ 19 }{ C } } _{ r-1 }\=20\sum _{ r=1 }^{ 20 }{ (r-1+1) } .{ _{  }^{ 19 }{ C } } _{ r-1 }\=20\sum _{ r=1 }^{ 20 }{ { (r-1) }^{  } } .{ _{  }^{ 19 }{ C } } _{ r-1 }+20\sum _{ r=1 }^{ 20 }{ { r }^{ 2 } } .{ _{  }^{ 19 }{ C } } _{ r-1 }\=20\times 19\sum _{ r=2 }^{ 20 }{ { _{  }^{ 18 }{ C } } _{ r-1 } } +20\times { 2 }^{ 19 }$
$=20\times 19\times { 2 }^{ 18 }+20\times { 2 }^{ 19 }=20\times { 2 }^{ 18 }(19+2)=20\times 21\times { 2 }^{ 18 }=420\times { 2 }^{ 18 }\quad $
(3) option is correct

Let $a-i=i+\dfrac{1}{i}$ for $i=1, 2,..., 20$. Put $p=\dfrac{1}{20}(a _1+n _2+...+n _{20})$ and $q=\dfrac{1}{20}\left(\dfrac{1}{a _1}+\dfrac{1}{a _2}+...+\dfrac{1}{a _{20}}\right)$. Then?

  1. $q\in \left(0, \dfrac{22-p}{21}\right)$

  2. $q\in \left(\dfrac{22-p}{21}, \dfrac{2(22-p)}{21}\right)$

  3. $q\in \left(\dfrac{2(22-p)}{21}, \dfrac{22-p}{7}\right)$

  4. $q\in \left(\dfrac{22-p}{7}, \dfrac{4(22-p)}{21}\right)$


Correct Option: A

The sum $\displaystyle\sum _{ 0\le i }^{  }{ \sum _{ j\le 10 }^{  }{ \left( _{  }^{ 10 }{ { C } _{ j } } \right) \left( _{  }^{ j }{ { C } _{ i } } \right)  }  } $ is equal to 

  1. $2^{10}-1$

  2. $2^{10}$

  3. $3^{10}-1$

  4. $3^{10}$


Correct Option: D
Explanation:
$\displaystyle\sum _{ 0\le i }^{  }{ \sum _{ j\le 10 }^{  }{ \left( _{  }^{ 10 }{ { C } _{ j } } \right) \left( _{  }^{ j }{ { C } _{ i } } \right)  }  } $

$= ^{10}C _{0}(^0C _0) + ^{10}C _1(^1C _1+^1C _0) + ……. + ^{10}C _{10}(^{10}C _{10}+^{10}C _{9}+...…+^{10}C _{0})$

$=2^0.^{10}C _{0} + 2^1.^{10}C _{1} + …….. + 2^{10}.^{10}C _{10}$

Now,


$(1+2x)^{10} = ^{10}C _{0}(1)^{10} + ^{10}C _1(1)^9(2x)^1 + ………….+^{10}C _{10}(2x)^{10} $

Put x = 1,

$(3)^{10} = ^{10}C _{0}(1)^{10} + ^{10}C _1(1)^9(2)^1 + ………….+^{10}C _{10}(2)^{10} $

Thus the required sum is $3^{10}$

What is the value of $\frac {1}{1+\sqrt 2}+\frac {1}{\sqrt 2+\sqrt 3}+\frac {1}{\sqrt 3+\sqrt 4}.....$ upto 15 terms?

  1. $1$

  2. $2$

  3. $3$

  4. $4$


Correct Option: C
Explanation:

By rationalising each term,
$\frac {1}{1+\sqrt 2}=\frac {1}{\sqrt 2+1}\times \frac {\sqrt 2-1}{\sqrt 2-1}=\frac {\sqrt 2-1}{2-1}=\sqrt 2-1$
$\frac

{1}{\sqrt 2+\sqrt 3}=\frac {1}{\sqrt 3+\sqrt 2}\times \frac {\sqrt

3-\sqrt 2}{\sqrt 3-\sqrt 2}=\frac {\sqrt 3-\sqrt 2}{3-2}$
$=\sqrt 3-\sqrt 2$
............................
$\frac {1}{\sqrt {15}+4}=\frac {1}{4+\sqrt {15}}\times \frac {4-\sqrt {15}}{4-\sqrt {15}}=\frac {4-\sqrt {15}}{16-15}$
$=4-\sqrt {15}$
$\therefore$ Given expression
$=(\sqrt 2-1)+(\sqrt 3-\sqrt 2)+.....+4-\sqrt {15}$
$=4-1=3$.

$3, 7, 13, 21, 31, .....$

  1. $40$

  2. $41$

  3. $42$

  4. $43$


Correct Option: D
Explanation:

Add the numbers $4, 6, 8, 10, 12$ etc Next number is $31 +12 = 43$

The sum of infinity of the series $\displaystyle 1+\frac{4}{5}+\frac{7}{5^{2}}+\frac{10}{5^{3}}+$..... is

  1. $\displaystyle\frac{16}{35}$

  2. $\displaystyle\frac{11}{8}$

  3. $\displaystyle\frac{35}{16}$

  4. $\displaystyle\frac{8}{6}$


Correct Option: C
Explanation:

Let $\displaystyle S=1+\frac { 4 }{ 5 } +\frac { 7 }{ { 5 }^{ 2 } } +\frac { 10 }{ { 5 }^{ 3 } } +...$   ...(1)
Multiply (1) by $\displaystyle \frac { 1 }{ 5 } $ , we get

$\displaystyle \frac { 1 }{ 5 } S=\frac { 1 }{ 5 } +\frac { 4 }{ { 5 }^{ 2 } } +\frac { 7 }{ { 5 }^{ 3 } } +\frac { 10 }{ { 5 }^{ 4 } } +...$   ...(2)

$(1) -(2)$, gives 
$\displaystyle \left( 1-\frac { 1 }{ 5 }  \right) S=1+\frac { 3 }{ 5 } +\frac { 3 }{ { 5 }^{ 2 } } +\frac { 3 }{ { 5 }^{ 3 } } +...$

$\displaystyle \Rightarrow \frac { 4 }{ 5 } S=1+\frac { 3 }{ 5 } \left( 1+\frac { 1 }{ 5 } +\frac { 1 }{ { 5 }^{ 2 } } +... \right) $

$\displaystyle \Rightarrow \dfrac { 4 }{ 5 } S=1+\dfrac { 3 }{ 5 } \left( \dfrac { 1 }{ 1-\dfrac { 1 }{ 5 }  }  \right) \Rightarrow \dfrac { 4 }{ 5 } S=1+\dfrac { 3 }{ 5 } \left( \dfrac { 5 }{ 4 }  \right) $

$\displaystyle \Rightarrow \frac { 4 }{ 5 } S=1+\frac { 3 }{ 4 } \Rightarrow S=\frac { 35 }{ 16 } $

$1^2+2^2+3^2r^2+4^2r^3+.....$ to $\infty$ is equal to

  1. $\dfrac{1+r}{(1-r)^2}A$

  2. $\dfrac{1+r}{(1-r)^3}A$

  3. ${1}{(1-r)^3A}$

  4. $\dfrac{1+r}{(1-r)^2}$


Correct Option: A
Explanation:

$1+4 + 9r^2 + 16r^3 ....\infty$

$A _2(4 + 16r^3) + (1+9r^2)$
$1 + r + (1 -91)^{-2} = A$
$\dfrac{1+r}{(1-r)^2}A$

Find the sum of the first 25 terms of the A.P.: 2 + 5 + 8 + 11 + ............ (use Gauss method)

  1. 910

  2. 930

  3. 950

  4. 940


Correct Option: C
Explanation:

Given that $a = 2; d = 3$
$n = 25 ; a _{25} = $?
Using Gauss method, we find the value of $a _{25}$
$a _n = a + (n - 1) d$
$a _{25} = 2 + (25 - 1) 3$
$= 2 + (24) 3$
$a _{25} = 74$
Sum of 'n' series using Gauss method is,
$S _n = \dfrac{n}{2} $   [First term + Last term]
$= \dfrac{25}{2} [2 + 74]$
$= 12.5 (76)$
$S _n = 950$

$73, 71, 67, 61, 59, ....$

  1. $57$

  2. $55$

  3. $53$

  4. $51$


Correct Option: C
Explanation:

Prime numbers in decreasing number series Next number is 53

The value of $ \displaystyle  \left ( 1-\dfrac{1}{3} \right )\left ( 1-\dfrac{1}{4} \right )\left ( 1-\dfrac{1}{5} \right )...\left ( 1-\dfrac{1}{n} \right )  $  is equal to

  1. $ \displaystyle \dfrac{1}{n} $

  2. $ \displaystyle \dfrac{2}{n} $

  3. $ \displaystyle \dfrac{3}{n} $

  4. $ \displaystyle \dfrac{4}{n} $


Correct Option: B
Explanation:

On simplification of first two term , we observed that
$\left(\frac{2}{3}\right)$ $\times \left(\frac{3}{4}\right)...$
So numerator is the multiplication from 2 to n-1 and denominator is the multiplication from 3 to n
So making it as factorial of first n and n-1 term we have to multiply 1 to numerator and 1 and 2 to denominator
$2\left(\frac{(n-1)!}{n!}\right)= \frac{2}{n}$

- Hide questions