0

Interpretation of define integral as an area - class-XII

Attempted 0/26 Correct 0 Score 0

The value of $\displaystyle \int _0^1\tan^{-1}\left (\frac {2x-1}{1+x-x^2}\right )dx$ is

  1. $1$

  2. $0$

  3. $-1$

  4. $\dfrac {\pi}{4}$


Correct Option: B
Explanation:

Let $I=\int _0^1\tan^{-1}\left (\dfrac {2x-1}{1+x-x^2}\right )dx$
$\Rightarrow I=\int _0^1 \tan^{-1}\left (\dfrac {x-(1-x)}{1+x(1-x)}\right )dx$
$\Rightarrow I=\int _0^1[\tan^{-1}x-\tan^{-1}(1-x)]dx$ ................ (1)
$\Rightarrow I=\int _0^1[\tan^{-1}(1-x)-\tan^{-1}(1-1+x)]dx$
$\Rightarrow I=\int _0^1[\tan^{-1}(1-x)-\tan^{-1}(x)]dx$
$\Rightarrow I=\int _0^1[\tan^{-1}(1-x)-\tan^{-1}(x)]dx$ ........... (2)
Adding (1) and (2), we obtain
$2I=\int _0^1(\tan^{-1}x+\tan^{-1}(1-x)-\tan^{-1}(1-x)-\tan^{-1}x)dx=0$
$\Rightarrow I=0$
Hence, the correct Answer is B.

$\int _{0}^{\pi /2}sin2xtan^{-1}\left ( sinx \right )dx=$

  1.  $\dfrac{\pi }{2}$-1

  2.  $\dfrac{\pi }{2}$+1

  3.  $\dfrac{3\pi }{2}$+1

  4.  $\dfrac{3\pi }{2}$-1


Correct Option: A
Explanation:

We have,

$I=\int _{0}^{\dfrac{\pi }{2}}{\sin 2x{{\tan }^{-1}}\left( \sin x \right)dx}$

$=\int _{0}^{\dfrac{\pi }{2}}{2\sin x\cos x{{\tan }^{-1}}\left( \sin x \right)dx}$

Let

$ \sin x=t $

$ \cos xdx=dt $

Change limit

$ \sin 0=t $

$ t=0 $

And,

$ \sin \dfrac{\pi }{2}=t $

$ t=1 $

Then,

$ \int _{0}^{1}{2t{{\tan }^{-1}}t\cos xdx} $

$ =\int _{0}^{1}{2t{{\tan }^{-1}}tdt} $

$ =2\int _{0}^{1}{t{{\tan }^{-1}}tdt} $

On integrating and we get,

$ 2\left[ {{\tan }^{-1}}t\int _{0}^{1}{t}dt-\int _{0}^{1}{\left( \dfrac{d\left( {{\tan }^{-1}}t \right)}{dt}\int _{0}^{1}{tdt} \right)}dt \right] $

$ =2\left[ {{\tan }^{-1}}t\left[ {{\left( \dfrac{{{t}^{2}}}{2} \right)} _{0}}^{1} \right]-\int _{0}^{1}{\dfrac{1}{1+{{t}^{2}}}}\dfrac{{{t}^{2}}}{2}dt \right] $

$ =2{{\tan }^{-1}}t{{\left( \dfrac{{{t}^{2}}}{2} \right)} _{0}}^{1}-\int _{0}^{1}{\dfrac{{{t}^{2}}}{1+{{t}^{2}}}}dt $

$ =2{{\tan }^{-1}}t{{\left( \dfrac{{{t}^{2}}}{2} \right)} _{0}}^{1}-\int _{0}^{1}{\dfrac{{{t}^{2}}+1-1}{1+{{t}^{2}}}}dt $

$ =2{{\tan }^{-1}}t{{\left( \dfrac{{{t}^{2}}}{2} \right)} _{0}}^{1}-\int _{0}^{1}{\dfrac{{{t}^{2}}+1}{1+{{t}^{2}}}}dt+\int _{0}^{1}{\dfrac{1}{1+{{t}^{2}}}}dt $

$ =2{{\tan }^{-1}}t{{\left( \dfrac{{{t}^{2}}}{2} \right)} _{0}}^{1}-\int _{0}^{1}{1}dt+\int _{0}^{1}{\dfrac{1}{1+{{t}^{2}}}}dt $

$ =2{{\tan }^{-1}}t{{\left( \dfrac{{{t}^{2}}}{2} \right)} _{0}}^{1}-{{\left[ t \right]} _{0}}^{1}+{{\left[ {{\tan }^{-1}}t \right]} _{0}}^{1}+C $

$ =2\left[ {{\tan }^{-1}}1-{{\tan }^{-1}}0 \right]\left[ \dfrac{{{1}^{2}}}{2}-\dfrac{{{0}^{2}}}{2} \right]-\left[ 1-0 \right]+\left[ {{\tan }^{-1}}1-{{\tan }^{-1}}0 \right]+C $

$ =2\left[ \dfrac{\pi }{4}-0 \right]\left[ \dfrac{1}{2} \right]-1+\left[ \dfrac{\pi }{4}-0 \right] $

$ =\dfrac{\pi }{4}+\dfrac{\pi }{4}-1 $

$ =\dfrac{2\pi }{4}-1 $

$ =\dfrac{\pi }{2}-1 $

Hence, this is the answer.

Evaluate: $\displaystyle \int _{0}^{\sqrt{3}}[x^{3} -1] dx$

  1. $\dfrac{1}{4}-\sqrt3$

  2. $\dfrac{1}{4}-\sqrt2$

  3. $\dfrac{9}{4}-\sqrt3$

  4. $\dfrac{9}{4}-\sqrt2$


Correct Option: C
Explanation:

Consider, $\displaystyle I= \int _{0}^{\sqrt{3}}[x^{3} -1] dx$


$\Rightarrow I=\left [\dfrac{x^4}{4}-x\right]^{\sqrt3} _{0}$

$I=\dfrac94-\sqrt3$

Solve $\displaystyle\int^{100} _0e^{x-[x]}dx=?$ where $[x]$ is greatest integer function.

  1. $100e$

  2. $100(e-1)$

  3. $100(e+1)$

  4. $100(1-e)$


Correct Option: B
Explanation:
Consider, $I=\displaystyle\int^{100} _0e^{x-[x]}dx$

$I=100\displaystyle\int^{1} _0e^{x}dx$

$I=100(e^x) _0^1$

$I=100(e^1-e^0)$

$I=100(e-1)$

$\int _0^\pi  {{x^2}\,g\left( x \right)\,dx\, = } $

  1. 0

  2. $\frac{\pi }{8}$

  3. $\frac{8}{{{\pi ^2}}}$

  4. $\frac{16}{{{\pi ^2}}}$


Correct Option: B

$\int _0^\pi  {f\left( x \right)\,dx\, = } $

  1. 0

  2. $\frac{8}{\pi }$

  3. $\frac{8}{{{\pi ^2}}}$

  4. $\frac{16}{{{\pi ^2}}}$


Correct Option: B

If $I _1 = \displaystyle \int^{2\pi /3} _{\pi / 2}\left|cos\dfrac{x}{2}cosx\right|dx,I _2=\left|\displaystyle \int _{\pi/2}^{2\pi/3} cos\dfrac{x}{2}cosxdx\right|$ then $I _1 - I _2$ equals 

  1. $\dfrac{1}{3}(\sqrt{32}-\sqrt{27})$

  2. $\dfrac{1}{3}(\sqrt{32}-\sqrt{25})$

  3. $\dfrac{1}{3}(\sqrt{27}-\sqrt{25})$

  4. None


Correct Option: A

The value of the definite integral, $\displaystyle \int _0^{\pi/2} \dfrac{sin5x}{sinx}dx$ is 

  1. 0

  2. $\dfrac{\pi}{2}$

  3. $\pi$

  4. $2\pi$


Correct Option: B
Explanation:
$\displaystyle = \int _{0}^{\dfrac{\pi}{2}} \dfrac{\sin 5x}{\sin x} dx$
We are going to use a important property if.
$\displaystyle \int _{0}^{\dfrac{\pi}{2}} \dfrac{\sin nx}{\sin x} = \begin{cases} \dfrac{\pi}{2} & ,\ if\ n\ is\ odd \\ o & ,\ if\ is\ even \end{cases}$
So, less $n=s (odd)$
$\displaystyle \int _{0}^{\dfrac{\pi}{2}} \dfrac{\sin 5x}{\sin x} =\dfrac{\pi}{2}$

The value of the definite integral $\int _{ 0 }^{ \pi /2 }{ \sin { x } \sin { 2x } \sin { 3x } dx } $ is equal to:

  1. $\cfrac{1}{3}$

  2. $-\cfrac{2}{3}$

  3. $-\cfrac{1}{3}$

  4. $\cfrac{1}{6}$


Correct Option: D
Explanation:

$\int _0^{\pi/2}\sin x\sin 2x\sin 3x dx$


$\Rightarrow \dfrac{1}{2}\int _0^{\pi/2}2\sin x\sin 2x\sin 3x dx$

$\Rightarrow \dfrac{1}{2}\int _0^{\pi/2}2\sin x\sin 3x\sin 2x dx$

We know that       $2\sin A \sin B=\cos(A-B)-\cos (A+B)$

$\Rightarrow \dfrac{1}{2}\int _0^{\pi/2}(\cos (x-3x)-\cos(x+3x))\sin 2x dx$

$\Rightarrow \dfrac{1}{2}\int _0^{\pi/2}(\cos 2x-\cos 4x)\sin 2x dx$

$\Rightarrow \dfrac{1}{2}\int _0^{\pi/2} \sin 2x \cos 2x dx-\dfrac{1}{2}\int _0^{\pi /2}\sin 2x \cos 4x dx$

$\Rightarrow \dfrac{1}{4}\int _0^{\pi/2} 2\sin 2x \cos 2x dx-\dfrac{1}{4}\int _0^{\pi /2}2\sin 2x \cos 4x dx$

We know that   $2\sin A \cos B=\sin(A+B)+\sin (A-B)$

$\Rightarrow \dfrac{1}{4}\int _0^{\pi/2} (\sin (2x+2x)+\sin (2x-2x))dx-\dfrac{1}{4}\int _0^{\pi /2}(\sin (2x+4x)+\sin (2x-4x)) dx$

$\Rightarrow \dfrac{1}{4}\int _0^{\pi/2} \sin 4xdx-\dfrac{1}{4}\int _0^{\pi /2}(\sin 6x-\sin 2x) dx$

$\Rightarrow \dfrac{1}{4}\int _0^{\pi/2} \sin 4xdx-\dfrac{1}{4}\int _0^{\pi /2}\sin 6x dx+\dfrac{1}{4}\int _{0}^{\pi/4}\sin 2x dx$

$\Rightarrow \dfrac{1}{4}[\dfrac{\sin 4x}{4}] _0^{\pi/4}-\dfrac{1}{4}[\dfrac{-\sin 6x}{6}] _0^{\pi/4}+\dfrac{1}{4}[\dfrac{-\cos 2x}{2}] _0^{\pi/4}$

$\Rightarrow \dfrac{-1}{12}+\dfrac{1}{4}=\dfrac{1}{6}$

The value of the integral $\displaystyle\int{\sin{x}{\cos}^{4}{x}dx}$ where $x\in\left[-1,\,1\right]$ is 

  1. 1

  2. 1\2

  3. 0

  4. 4


Correct Option: C
Explanation:
$f\left(x\right)=\sin{x}{\cos}^{4}{x},$

$f\left(-x\right)=\sin{\left(-x\right)}{\cos}^{4}{\left(-x\right)}=-f\left(x\right)$

Since $f\left(x\right)$ is an odd function, $\displaystyle\int _{-1}^{1}\sin{x}{\cos}^{4}{x}dx=0$

If $\Delta (x)=\left| \begin{matrix} 1+x+2{ x }^{ 2 } & x+3 & 1 \ x+2{ x }^{ 2 } & x & 3 \ 3x+6{ x }^{ 2 } & 3x+11 & 9 \end{matrix} \right| $ then $\displaystyle \int^{1} _{0}\Delta (x)dx$ is

  1. $\dfrac {176}{5}$

  2. $-\dfrac {176}{3}$

  3. $\dfrac {186}{3}$

  4. $-\dfrac {192}{3}$


Correct Option: A
If $\phi{\left(x\right)}={\phi}^{\prime}{\left(x\right)}$ and $\phi{\left(1\right)}=2$ then $\phi{\left(3\right)}$  is equal to
  1. ${ \phi  }^{ 2 }$

  2. $2{ \phi  }^{ 2 }$

  3. $3{ \phi  }^{ 2 }$

  4. $2{ \phi  }^{ 3 }$


Correct Option: A
Explanation:
$ \phi(x) = \phi '(x) \Rightarrow  \phi(x) = \frac{2\phi(x)}{dx} $

$ \Rightarrow  $  $\int  dx = \int \frac{d(\phi (x))}{\phi(x)}$

$ \Rightarrow x+c = ln \phi (x) \Rightarrow \phi (x) = k.e^{x}$

$ \phi(1) = 2 \Rightarrow  2 = k.e^{1}  $ $ \Rightarrow k=2e^{-1}$

$  \therefore \phi (x) = 2.e^{x-1}$

$ \phi(3) = 2.e^{2} = \phi^{2}$

$ \phi(3) = \phi^{2}$


$\displaystyle \int _{1}^{4}\frac{\mathrm{x}\mathrm{d}\mathrm{x}}{\sqrt{2+4\mathrm{x}}}=$

  1. $\displaystyle \frac{1}{2}$

  2. $\displaystyle \frac{1}{\sqrt{2}}$

  3. $\displaystyle \frac{3}{2}$

  4. $\displaystyle \frac{3}{\sqrt{2}}$


Correct Option: D
Explanation:

$\int _{1}^{4}\dfrac{x   dx}{\sqrt{2 + 4x}}=\dfrac{1}{2}\int _{1}^{4}\dfrac{x   dx}{\sqrt{x+\dfrac{1}{2}}}$
$=\dfrac{1}{2}\left [ \int _{1}^{4}\dfrac{(x+\dfrac{1}{2})dx}{\sqrt{x+\dfrac{1}{2}}}-\int _{1}^{4}\dfrac{\dfrac{1}{2}dx}{\sqrt{x+\dfrac{1}{2}}} \right ]$
$=\dfrac{1}{2}\left [ \int _{1}^{4} \sqrt{x+\dfrac{1}{2}} dx-\int _{1}^{4}(x+\dfrac{1}{2})^{\dfrac{1}{2}} \int _{1}^{4} \right ]$
$=\dfrac{1}{2} \left [ \dfrac{2}{3} (x+\dfrac{1}{2})^{\dfrac{3}{2}} \int _{1}^{4}-(x+\dfrac{1}{2})^{\dfrac{4}{2}} \int _{1}^{4} \right ]$
$=\dfrac{1}{3} \left [ \left ( \dfrac{9}{2} \right )^{\dfrac{3}{2}}-\left ( \dfrac{3}{2} \right )^{\dfrac{3}{2}} \right ] -\dfrac{1}{2} \left [ \left ( \dfrac{9}{2} \right )^{\dfrac{1}{2}}-\left ( \dfrac{3}{2} \right )^{\dfrac{1}{2}} \right ]$
$=\dfrac{1}{3} \left [ \left ( \dfrac{9}{2} \right )\left ( \dfrac{9}{2} \right )^{\dfrac{1}{2}}-\left ( \dfrac{3}{2} \right )\left ( \dfrac{3}{2} \right )^{\dfrac{1}{2}} \right ] - \dfrac{1}{2} \left [ \left ( \dfrac{3}{\sqrt{2}} \right )-\dfrac{\sqrt{3}}{\sqrt{2}} \right ]$
$=\dfrac{3}{\sqrt{2}}$

The value of $\displaystyle \int _{0}^{2}(x-\log _{2}a)dx=2\log _{2}(\frac{2}{a})$ for which of the following conditions?

  1. $\mathrm{a}>0$

  2. $\mathrm{a}>2$

  3. $\mathrm{a}=4$

  4. $\mathrm{a}=8$


Correct Option: A
Explanation:

$\int _{ 0 }^{ 2 }{ (x-\log _{ 2 }a } )dx=2\log _{ 2 }(\cfrac { 2 }{ a } )$

The solution exists only if function is defined.
$ x-\log _{ 2 }a\longrightarrow$ defined
$ x\longrightarrow$ is defined for all values 
But $\log _{ 2 }a\longrightarrow$ defined for all values
But $ \log _{ 2 }a\longrightarrow$ defined for only a>0$
$\therefore \log (0)$ and $\log \text {(negative values)} )\longrightarrow$ not defined
Hence, required condition is $a>0$.

Consider the integral $I=\displaystyle\int^{\pi} _0 ln(\sin x)dx$.What is $\displaystyle\int^{\dfrac{\pi}{2}} _{0}$ ln $(\sin x)dx$ equal to?

  1. $4I$

  2. $2I$

  3. $I$

  4. $\dfrac{I}{2}$


Correct Option: D
Explanation:

$I = \displaystyle \int _{0}^{\pi} {ln(\sin x)dx}$

 using property,
$I = \displaystyle \int _{0}^{\dfrac{\pi}{2}} {(ln(\sin (2\pi -x) +ln(\sin x)) dx}$

we know that $\sin(x) = \sin(2\pi -x)$ 

$I = 2\displaystyle \int _{0}^{\dfrac{\pi}{2}} {ln(\sin x)dx}$

$\dfrac{I}{2} = \displaystyle \int _{0}^{\dfrac{\pi}{2}} {ln(\sin x)dx}$

Consider the integral $I=\displaystyle\int^{\pi} _0 ln(\sin x)dx$.What is $\displaystyle\int^{\frac{\pi} {2}} _0 ln(\cos x)dx$ equal to?

  1. $\dfrac{I}{2}$

  2. $I$

  3. $2I$

  4. $4I$


Correct Option: A
Explanation:

$I = \displaystyle \int _{0}^{\pi} {ln(\sin x)dx}$

 using property,
$I = \displaystyle \int _{0}^{\dfrac{\pi}{2}} {(ln(\sin (2\pi -x) +ln(\sin x)) dx}$

we know that $\sin(x) = \sin(2\pi -x)$ 
$I = 2\displaystyle \int _{0}^{\dfrac{\pi}{2}} {ln(\sin x)dx}$

$\dfrac{I}{2} = \displaystyle \int _{0}^{\dfrac{\pi}{2}} {ln(\sin x)dx}$
 by property,

$\dfrac{I}{2} = \displaystyle \int _{0}^{\dfrac{\pi}{2}} {ln(\sin (\dfrac{\pi}{2} - x))dx}$

$\dfrac{I}{2} = \displaystyle \int _{0}^{\dfrac{\pi}{2}} {ln(\cos x)dx}$

$ \int _{\sin x}^1 t^2 f(t) dt = 1 - \sin x \forall x \epsilon (0, \pi / 2 ) $ then $ f \left( \dfrac {1}{\sqrt3} \right) $ is :

  1. $3$

  2. $\sqrt3$

  3. $1/3$

  4. None of these


Correct Option: A
Explanation:

$ \int _{\sin x}^1 t^2 f(t) dt = 1 - \sin x \forall x \epsilon (0, \pi/2 ) $
Differentiating both sides we get 
$ \dfrac {d}{dx} (1) [ 1 \cdot f (1)] - \cos x ( \sin^2 x) f ( \sin x) = -\cos x  $
$ \Rightarrow f ( \sin x) = \dfrac {1}{ \sin^2 x} $
$ \therefore f \left( \dfrac {1}{\sqrt3} \right) = f \left( \sin \left( \sin^{-1} \dfrac {1}{\sqrt3} \right) \right) $
$ = \left[ \dfrac {1}{ \sin \left( \sin^{-1} \dfrac {1}{\sqrt3} \right)} \right]^2 = 3 $

Consider the integrals ${I _1} = \int _0^1 {{e^{ - x}}{{\cos }^2}xdx,} {I _2} = \int _0^1 {{e^{ - {x^2}}}{{\cos }^2}xdx,} {I _3} = \int _0^1 {{e^{ - x}}dx} $ and ${I _4} = \int _0^1 {{e^{ - (1/2){x^2}}}} dx$. The greatest of these integrals is

  1. $I _1$

  2. $I _2$

  3. $I _3$

  4. $I _4$


Correct Option: D
Explanation:

$I _1=\int _{0}^{4}e^{-x} cos^2x dx$
$I _2=\int _{0}^{1}e^{-x^2}cos^2x dx$
Both have $cos^2x$ so value get restricted more in (0, 1)
Now in (0, 1) $e^{-\frac {x^2}{2}}>e^{-x}$
$\therefore \int _{0}^{1}e^{-\frac {x^2}{2}}>\int _{0}^{1}e^{-x}$
$\therefore I _4>I _3>I _1>I _2$

Let $ f\left( a,b \right) =\int _{ a }^{ b }{ \left( { x }^{ 2 }-4x+3 \right) dx,\left( b>a \right)  }$ then

  1. $ f\left( a,3 \right)$ is least when $a=1$

  2. $f\left( 4,b \right)$ is an increasing function $ \forall b\ge 4$

  3. $ f\left( 0,b \right)$ is least for $b=2$

  4. $ \min { \left{ f\left( a,b \right) \right} =-\dfrac { 4 }{ 3 } } \forall a,b\in R$


Correct Option: A
Explanation:

First of all integrate the function.

$\displaystyle \int _{  }^{  }{ \left( { x }^{ 2 }-4x+3 \right) dx= } \left[ \frac { { x }^{ 3 } }{ 3 } -4\frac { { x }^{ 2 } }{ 2 } +3x \right] $

Apply the limits,
$\displaystyle f(a,b)={ \left[ \frac { { x }^{ 3 } }{ 3 } -4\frac { { x }^{ 2 } }{ 2 } +3x \right]  } _{ a }^{ b }$

Here $b=3$

Therefore,
$\displaystyle f(a,3)={ \left[ \frac { { x }^{ 3 } }{ 3 } -4\frac { { x }^{ 2 } }{ 2 } +3x \right]  } _{ a }^{ b }=\left[ \frac { 27 }{ 3 } -2\times 9+9 \right] -\left[ \frac { { a }^{ 3 } }{ 3 } -2{ a }^{ 2 }+3a \right] \ \displaystyle =2{ a }^{ 2 }-\frac { { a }^{ 3 } }{ 3 } -3a$

Hence,
Differentiate the above function to find the maximum or minimum.
$\displaystyle { f }^{ \prime  }\left( a,3 \right) =4a-{ a }^{ 2 }-3=0$

therefore $\displaystyle a=1,3$

Check whether the function is minimum or maximum.
$\displaystyle { f }^{ \prime \prime  }\left( a,3 \right) =4-{ 2a }=2$ which  is greater than $0$.
Hence the function $f(a,3)$ is minimum at $a=1$.



$\displaystyle \int _0^1 \dfrac{xe^x}{(x + 1)^2} dx =$

  1. $\dfrac{e}{2}$

  2. $\dfrac{e - 1}{2}$

  3. $\dfrac{3e}{2} -1$

  4. $\dfrac{e - 3}{2}$


Correct Option: C

$\displaystyle\int _{ 0 }^{ 1 }{ \cfrac { \tan ^{ -1 }{ x }  }{ x }  } dx$ equals

  1. $\displaystyle\int _{ 0 }^{ \pi /2 }{ \cfrac { x }{ \sin { x } } dx } $

  2. $\cfrac { 1 }{ 2 } \displaystyle\int _{ 0 }^{ \pi /2 }{ \cfrac { x }{ \sin { x } } dx } $

  3. $\displaystyle\int _{ 0 }^{ \pi /2 }{ \cfrac { \sin { x } }{ x } dx } $

  4. None of the above


Correct Option: B
Explanation:

Let $I=\int _{ 0 }^{ 1 }{ \cfrac { \tan ^{ -1 }{ x }  }{ x }  } dx$


Put $\tan ^{ -1 }{ x } =\cfrac { z  }{ 2 } \Rightarrow x=\tan { \cfrac { z  }{ 2 }  } $

$\Rightarrow dx=\cfrac { 1 }{ 2 } \sec ^{ 2 } \cfrac { z  }{ 2 } dz$

$\therefore \quad I=\displaystyle\int _{ 0 }^{ \pi /2 }{ \cfrac { \cfrac { z }{ 2 } \left( \cfrac { 1 }{ 2 } \sec ^{ 2 } \cfrac { z  }{ 2 }  \right)  }{ \tan { \cfrac { z }{ 2 }  }  }  } dz$

$I=\cfrac { 1 }{ 2 } \displaystyle\int _{ 0 }^{ \pi /2 }{ \cfrac { z }{ \cfrac { \sin { \cfrac { z }{ 2 }  }  }{ \cos { \cfrac { z }{ 2 }  }  }  } .\cfrac { 1 }{ 2\cos ^{ 2 }{ \cfrac { z }{ 2 }  }  } dz } $

$=\cfrac { 1 }{ 2 } \int _{ 0 }^{ \pi /2 }{ \cfrac { z }{ 2\sin { \cfrac { z }{ 2 }  } \cos { \cfrac { z }{ 2 }  }  }  } dz$

$=\cfrac { 1 }{ 2 } \displaystyle\int _{ 0 }^{ \pi /2 }{ \cfrac { z }{ \sin { z }  }  } dz=\cfrac { 1 }{ 2 } \displaystyle\int _{ 0 }^{ \pi /2 }{ \cfrac { x }{ \sin { x }  }  } dx$

Evaluate $\displaystyle\int^{\frac{3}{2}} _{-1}|x\sin(\pi x)|dx$.

  1. $\dfrac {3}{\pi} +\dfrac {1}{\pi^2}$

  2. $3\pi +\pi^2$

  3. $\dfrac { 2 }{ \pi } +\dfrac { 1 }{ { \pi }^{ 2 } }$

  4. none of the above


Correct Option: A
Explanation:

$|x\sin(\pi x)|=\begin{cases}x\sin \pi x ,\,\,\,\,x\in(-1,1)\  -x\sin\pi x,x\in (1,\dfrac{3}{2})  \end{cases}$

$\displaystyle \int _{ 1 }^{ \frac { 3 }{ 2 }  }{ |x\sin(\pi x)| }dx=\int _{ -1 }^{ 1  }{ x\sin(\pi x)dx }+\int _{ 1 }^{ \frac { 3 }{ 2 }  }{ -x\sin(\pi x)dx }$

$=\displaystyle \left|\dfrac{-x\cos\pi x}{\pi}\right|^1 _{-1}-\int _{- 1 }^{ 1  }{ \left(\dfrac{-\cos\pi x}{\pi}dx\right) }-\left[\left|\dfrac{-x\cos (\pi x)}{\pi}\right|^{\dfrac{3}{2}} _1-\int _{ 1 }^{ \frac { 3 }{ 2 }  }{ \dfrac{-\cos x }{\pi}dx } \right] $ 

$=\dfrac{1}{\pi}-\left(\dfrac{-1}{\pi}\right)+0-\left[\dfrac{-1}{\pi}-(\dfrac{1}{\pi^2})\right]$

$=\dfrac{1}{\pi}+\dfrac{1}{\pi}+\dfrac{1}{\pi}+\dfrac{1}{\pi^2}$

$=\dfrac{3}{\pi}+\dfrac{1}{\pi^2}$  

$\int _{ 0 }^{ \infty  }{ f\left( x+\cfrac { 1 }{ x }  \right) .\cfrac { \ln { x }  }{ x }  } dx$

  1. Is equal to zero

  2. Is equal to one

  3. Is equal to $\cfrac { 1 }{ 2 } $

  4. Can not be evaluated


Correct Option: A
Explanation:

Let: $lnx=t \Rightarrow x=e^{t}$
$\Rightarrow \dfrac{1}{x}dx=dt$

As "x" varies from $0$ to $\infty$ "$lnx $  $[t]$" varies $-\infty$ to $\infty$.
Now,
$\int _{0}^{\infty}f(x+\dfrac{1}{x}).\dfrac{lnx}{x}dx$

$\Rightarrow \int _{-\infty}^{\infty}f(e^{t}+e^{-t}).tdt = F(t)$

Now,
Using properties of definite integral:
Here we can see above function is an odd function i.e $F(-t)=-F(t)$
therefore on integrating from $-\infty$ to $\infty$ sum of area of $odd$ $function$ is $zero.$
$\Rightarrow \int _{-\infty}^{\infty}f(e^{t}+e^{-t}).tdt =0$

Thus,
$\int _{0}^{\infty}f(x+\dfrac{1}{x}).\dfrac{lnx}{x}dx=0$
Hence, correct option is $"A"$

Evaluate $I = \displaystyle \int _{\pi /6}^{\pi /3}\sin x:dx$

  1. $\displaystyle \frac{1-\sqrt{3}}{2}$

  2. $\displaystyle \frac{\sqrt{3}+1}{2}$

  3. $\displaystyle \frac{\sqrt{3}-1}{2\sqrt{3}}$

  4. None of these


Correct Option: A
Explanation:
Given : $I = \displaystyle \int _{\pi /6}^{\pi /3}\sin x\:dx$

Integeration of $\sin x dx$ is $-cos x dx + c$

$I = -cos x dx$

Substuting the upper and lower limit values we get,

$I = -cos\dfrac{\pi}{3}+cos\dfrac{\pi}{6}$

$I = \dfrac{-\sqrt{3}}{2} + \dfrac{1}{2}$

$I = \dfrac{1-\sqrt{3}}{2}$

What is $\displaystyle \int _{ 0 }^{ \pi  }{ { e }^{ x } } \sin { x } dx$ equal to?

  1. $\cfrac { { e }^{ \pi }+1 }{ 2 } $

  2. $\cfrac { { e }^{ \pi }-1 }{ 2 } $

  3. ${ e }^{ \pi }+1$

  4. $\cfrac { { e }^{ \pi }+1 }{ 4 } $


Correct Option: A
Explanation:

Using Integration by part$:-$

Considering 1st function $u(x)=sinx$ and 2nd function $v(x)=e^x$
Now using Integration by parts$:-$

$\int _{0}^{\pi}e^xsinxdx=sinx\int _{0}^{\pi}e^xdx-\int _{0}^{\pi}\left (\dfrac{d}{dx}(sinx)\int _{0}^{\pi}e^x  \right )$

$\Rightarrow \int _{0}^{\pi}e^xsinxdx=(sinx\times e^x)| _{0}^{\pi}-\int _{0}^{\pi}\left (cosx e^xdx  \right )$
 
Again using Integration by parts:-
$\Rightarrow \int _{0}^{\pi}e^xsinxdx=(0\times e^\pi-0\times 1)-\int _{0}^{\pi}\left (cosx e^xdx  \right )$

$\Rightarrow \int _{0}^{\pi}e^xsinxdx=(0\times e^\pi-0\times 1)-\left (cosx\int _{0}^{\pi}e^xdx-\int _{0}^{\pi}\dfrac{d}{dx}(cosx)\int _{0}^{\pi}e^xdx \right )$

$\Rightarrow \int _{0}^{\pi}e^xsinxdx=-(cosx\times e^x)| _{0}^{\pi}-\int _{0}^{\pi}\left (sinx e^xdx  \right )         \left \langle \because \dfrac{d}{dx}(cosx)=-sinx  \right \rangle$

$\Rightarrow \int _{0}^{\pi}e^xsinxdx+\int _{0}^{\pi}\left (sinx e^xdx  \right )=-(cosx\times e^x)| _{0}^{\pi}$

$\Rightarrow 2\int _{0}^{\pi}e^xsinxdx=-(-1\times e^\pi-1\times 1)$

$\Rightarrow \int _{0}^{\pi}e^xsinxdx=\dfrac{e^\pi+1}{2}$

- Hide questions