0

Cardinal number of a finite set - class-IX

Description: cardinal number of a finite set
Number of Questions: 23
Created by:
Tags: relations and functions set concepts sets maths fundamentals introduction to set
Attempted 0/23 Correct 0 Score 0

If $A\subset B$, then $n[P(A)]$ ______ $n[P(B)]$

  1. $=$

  2. $<$

  3. $\leq $

  4. $>$


Correct Option: B
Explanation:

Assume $ A \subset B$ is true. 

Then, every element of $A$ i.e. $a _1,a _2, ... , a _n$ in A are also in B.

So, number of elements in $B$ will always be greater than no. of elements in $A$

And $P(A)$ will contain less number of subsets than $P(B)$

Hence, $n[P(A)] <  n[P(B)]$

If $A $and $B$ are not disjoint, then $\displaystyle n\left( A \cup  B \right) $ is equal to

  1. $\displaystyle n\left( A \right) +n\left( B \right) $

  2. $\displaystyle n\left( A \right) +n\left( B \right) -n\left( A \cap B \right) $

  3. $\displaystyle n\left( A \right) +n\left( B \right) +n\left( A \cap B \right) $

  4. $\displaystyle n\left( A \right) .n\left( B \right) $


Correct Option: B
Explanation:

$\displaystyle n\left( A\quad \cup \quad B \right) =n\left( A \right) +n\left( B \right) -n\left( A\quad \cap \quad B \right) $

If $n(A) = n(B)$ then

  1. $n(A - B) = n(B - A)$

  2. $n(AB) = n(A) + n(B)$

  3. $n(A - B) =\phi$

  4. $n(AB) = n(B) - n(A - B)$


Correct Option: A,C
Explanation:

If, $n(A)=n(B)$

a.  $n(A-B) = n(B-A)$. As, the no. of elements are same, if we subtract A from B or B from A, we will get the same no. of elements

b.  $n(AB)\neq n(A)+n(B)$. It is $n(A\cup B)=n(A)+n(B)$

c.  $n(A-B)= \phi$

d.  $n(AB)\neq n(B) - n(A-B)$. It is $n(AB) = n^2$ where n is the no. of elements of these sets

If $n(A) = n(B)$ then:

  1. $n(A- B) = n(B- A)$

  2. $n(AB)= n(A) + n(B)$

  3. $n(A- B)=n(A)-n(B)$

  4. $n(AB) = n(B) - n(A-B)$


Correct Option: A
Explanation:
Given: $n(A) = n(B)$
$n(A)$ is the cardinal no. of set $A$ and same for the set $B$

Thus, the number of elements are always same no matter what type of operation we are performing.

Hence, $n(A-B)=n(B-A)$.

The set contains $5$ elements, then the number of elements in the power set $P$ $(A)$ is equal to

  1. $32$

  2. $36$

  3. $25$

  4. $40$


Correct Option: A
Explanation:

$$n\left( A \right) =5$ 

$\Rightarrow n\left( P\left( A \right)  \right) ==2^{n(A)}={ 2 }^{ 5 }=32$

Number of elements in  a set is called __________

  1. Cardial number

  2. Set number

  3. Members

  4. None


Correct Option: A

In a city $20\%$ of the population travels by car, $50\%$ travels by bus and $10\%$ travels by both car and bus. Then, persons travelling by car or bus is

  1. $80\%$

  2. $40\%$

  3. $60\%$

  4. $70\%$


Correct Option: C

The number of elements of the power set of a set containing $n$ elements is

  1. $2^{n-1}$

  2. $2^n$

  3. $2^n-1$

  4. $2^{n+1}$


Correct Option: B
Explanation:

If there is a finite number of n elements in $A,$ then the power set $P (A)$ has $2^n$ elements. 

Hence option $B$ is the correct answer.

Let $U$ be the universal set for sets $A$ and $B$ such that $n(A)=200 , n(B)=300$ and $n(A\cap B)=100$, then $n(A'\cap B')$ is equal to $300$ provided that $n(U)$ is equal to

  1. $600$

  2. $700$

  3. $800$

  4. $900$


Correct Option: B
Explanation:

$n(A\cup B)=n(A)+n(B)-n(A\cap B)$
$=200+300-100$
$=400$
$n(A'\cap B')=n(A\cup B)'$
                    $=n(U) - n(A\cup B)$
$300=n(U)-400$
$n(U)=700$

If $\displaystyle n(U)=700,n(A)= 200,n(B)= 240,n(A\cap B)= 100,$ then $\displaystyle n(A'\cup B') $ is equal to

  1. $260$

  2. $560$

  3. $360$

  4. $600$


Correct Option: D
Explanation:

Using De Morgan's law,
$\displaystyle n(A'\cup B')= n(A\cap  B)' $ $\displaystyle

= n(U)-n(A\cap B)=  n(U)-100 $ $\displaystyle = 700-100= 600$

A market research group conducted a survey of $2500$ consumers and reported that $1620$ consumers like product $p _{1}$ and $1500$ consumers like product $p _{2}$ then (Note $A$ and $B$ denotes the set of products $p _{1}$ and $p _{2}$ respectively)

  1. $\displaystyle n\left ( A \cup B \right )\geq 620$

  2. $\displaystyle n\left ( A \cap B \right )\leq 1500$

  3. $\displaystyle 620 \leq n\left ( A \cap B \right )\leq 1500$

  4. All of these


Correct Option: D
Explanation:

$n(A)  =1620, n(B) = 1500$

$\Rightarrow n(A\cap B) \leq min{n(A), n(B)} $

$\Rightarrow n(A\cap B) \leq 1500$

Also $n(A\cup B) \geq  n(A)+n(B) -n(U) =620$

 $n(A\cup B) \geq620$

Hence all options are correct.

In a community it is found that $52$% people like coffee and $73$% like tea. If $x\%$ like both coffee and tea then

  1. $\displaystyle x\geq 25$

  2. $\displaystyle x\leq 52$

  3. $\displaystyle 25\leq x\leq 52 $

  4. all of these


Correct Option: C
Explanation:

Let $A=$ number of people like coffee, $B=$ number of people like tea.


$\therefore \ n(A)=52$%  $ \ n(B) = 73$%


$\displaystyle n\left ( A\cap B \right ) =x$%

Let total people in the community =$100 \displaystyle = n\left ( U \right )$
 
$\displaystyle \therefore n\left ( A\cup B \right )\leq 100$ 

$\displaystyle n\left ( A \right )+n\left ( B \right )-n\left ( A\cap B \right )\leq 100$ 

$\displaystyle 52+73-x\leq 100$ 

$\Rightarrow \displaystyle 125-x\leq 100$ 

$\displaystyle\Rightarrow  \therefore x\geq 25$...(i)

Again $\displaystyle A\cap B\subseteq A$

$\displaystyle \Rightarrow n\left ( A\cap B \right )\leq n\left ( A \right )$ 

$\displaystyle x \leq 52$ ...(ii)

$\displaystyle

\therefore $ By (i) and (ii)$\displaystyle 25\leq x\leq 52$

Let $\displaystyle n\left ( u \right )=700,n\left ( A \right )=200, n\left ( B \right )=300, n\left (A\cap B \right )=100$, then $n\left ( A'\cap B' \right )=$

  1. $400$

  2. $600$

  3. $300$

  4. None of these


Correct Option: C
Explanation:

$\displaystyle n \left ( A' \cap B'\right )=n\left ( A\cup  B\right

)'$ $\displaystyle =n\left ( u \right )-n\left ( A\cup B \right

)$ $\displaystyle =n\left ( u \right )-\left {n \left ( A \right

)+n\left ( B \right )-n\left ( A\cap B \right ) \right

}$ $\displaystyle =700-\left { 200+300-100 \right }=300$

Let $A$ and $B$ be two sets such that $\displaystyle n\left( A \right) =70$ and $\displaystyle n\left( B \right) =60$ and $\displaystyle n\left( A \cup B \right) =110 $. Then $\displaystyle n\left( A \cap B \right) $ is equal to

  1. $240$

  2. $20$

  3. $100$

  4. $120$


Correct Option: B
Explanation:

Given $\displaystyle n\left( A \right) =70$ and $\displaystyle n\left( B \right) =60$ and $\displaystyle n\left( A\quad \cup \quad B \right) =110 $.

$\displaystyle n\left( A\quad \cup \quad B \right)=\displaystyle n\left( A \right)+n\left( B \right)-n\left( A\quad \cap \quad B \right)$

$\Rightarrow 110=70+60-\displaystyle n\left( A\quad \cap \quad B \right)$

$\therefore \displaystyle n\left( A\quad \cap \quad B \right)=20$

Hence, option B. 

Out of 100 students, 50 fail in English and 30 in Mathematics. It 12 students fail in both English and Mathematics, the number of students passing both these subjects is

  1. $8$

  2. $20$

  3. $32$

  4. $50$


Correct Option: C
Explanation:

$n(A)=50,n(B)=30,n(A\cap B)=12,n(A\cup B)'=?$
No. of students failed in both subjects
$n(A\cup B)=(50-12)+(30-12)+12$
$=68$
$\therefore$ Req. No. of students passed in both subjects $=100-68=32$

Let $A$ and $B$ be two sets such that $n(A)=70, n(B)=60$ and $n(A\cup B)=110$. Then $n(A\cap B)$ is equal to-

  1. $240$

  2. $20$

  3. $100$

  4. $120$


Correct Option: B
Explanation:

We know,  $n(A\cup B)=n(A)+n(B)-n(A\cap B)$


$\therefore  n(A\cap B)=n(A)+n(B)-n(A\cup B)$

                      $=70+60-110$

                      $=20$

If sets $A$ and $B$ are not disjoint, then $n(A\cup B)$ is equal to

  1. $n(A)+n(B)$

  2. $n(A)+n(B)-n(A\cap B)$

  3. $n(A)+n(B)+n(A\cap B)$

  4. $n(A)$, $n(B)$


Correct Option: B
Explanation:

In all cases(even if sets A and B are disjoint)


$n(A\cup B) = n(A) +n(B)-n(A\cap B)$, only that $n(A\cap B)=0$ if they are disjoint.

$A = {$ An integer whose square is a negative value$}$ is 

  1. singleton set

  2. null set

  3. infinite set

  4. disjoint set


Correct Option: B
Explanation:

The square of every integer is a non-negative number
$\displaystyle \therefore A = \phi   $ i.e. the null set.

Let $S$ be a set of all distinct numbers of the form $\dfrac{p}{q}$, where $p, q$ $\in [1, 2, 3, 4, 5, 6]$. What is the caardinality of the set $S$?

  1. $21$

  2. $23$

  3. $32$

  4. $36$


Correct Option: B
Explanation:

Total possible numbers of form $\dfrac { p }{ q } $ when $p\neq q$ is $={}^{ 6 }C _{ 2 }=30$

Numbers when $p=q$ is $={}^{ 6 }C _{ 1 }=6$

Therefore total numbers $30+6=36$

$\dfrac { 1 }{ 1 } =\dfrac { 2 }{ 2 } =\dfrac { 3 }{ 3 } =\dfrac { 4 }{ 4 } =\dfrac { 5 }{ 5 }= \dfrac { 6 }{ 6 } $      (five numbers deducted from caardinality of set) 

$\dfrac { 1 }{ 2 } =\dfrac { 2 }{ 4 } =\dfrac { 3 }{ 6 } $    (two numbers deducted from caardinality of set) 

$\dfrac { 2 }{ 1 } =\dfrac { 4 }{ 2 } =\dfrac { 6 }{ 3 } $     (two more  numbers deducted from caardinality of set) 

$\dfrac { 1 }{ 3 } =\dfrac { 2 }{ 6 } $          (one number deducted from caardinality of set) 

$\dfrac { 3 }{ 1 } =\dfrac { 6 }{ 2 } $          (one more number deducted from caardinality of set) 

$\dfrac { 2 }{ 3 } =\dfrac { 4 }{ 6 } $          (one number deducted from caardinality of set) 

$\dfrac { 3 }{ 2 } =\dfrac { 6 }{ 4 } $          (one more number deducted from caardinality of set) 

So, the caardiality of set $=36-5-2-2-1-1-1-1=23$.

So, option B is correct.

$n[P(A)] = 16$, then $n(A) =$ ________

  1. $1$

  2. $2$

  3. $3$

  4. $4$


Correct Option: D
Explanation:

If $A$ is a set. Then, $n(A)$ is called cardinal number of the set A = number of elements in set A.

$P(A)$ is called power set of $A$. Power set $= P(A) =$ set of all subsets of set $A$

We know that if number of elements in set $A$ is $n$

$n(A) = n$

Number of subsets of power set $= 2 ^n$

Given,

$n[ P(A)] = 16$

$2^n = 16$

$2 ^n = 2 ^4$

Therefore, $n = 4$

Americans like at least one of cheese or apples. A survey shows that $63$% of the Americans like cheese while $76$% like apples. If $x$ % of the Americans like both cheese and apples, then

  1. $x = 39$

  2. $x= 63$

  3. $3 \leq x \leq 63$

  4. None of these


Correct Option: A
Explanation:
Given $A$ be the percent of americans like cheese
           $B$ be the percent of americans like apples

$p(A)=\dfrac{63}{100}=0.63$

$p(B)=\dfrac{76}{100}=0.76$

Let $p(A\cap B)=x$

$p(A\cup B)=1$ as every american likes either cheese or apples

$p(A\cup B)=p(A)+p(B)-p(A\cap B)$

$1=0.63+0.76-x$

$x=1.39-1$

$x=0.39\Rightarrow x=0.39\times 100=39\%$

Let the sets $A={2,4,6, 8, ...}$ and $B={3, 6, 9, 12, ...}$, and $n(A)=200, n(B)=250$. Then

  1. $n\left ( A\cap B \right )=67$

  2. $n\left ( A\cup B \right )=450$

  3. $n\left ( A\cap B \right )=66$

  4. $n\left ( A\cup B \right )=384$


Correct Option: C,D
Explanation:

In A, last term will be $400$.

In B, the terms are also in A.P having a common difference of $3$.

Hence 

$a _{n}=a _1+(n-1)d$.

Now $n=250$ for the last term.

Hence

$a _{250}=3+(250-1).3$
$=3(1+250-1)$
$=750.$

Now $A\cap B$ will have elements which are multiples of $6$.

Last term will be $400-4=396$.

Hence
$a _{n}=a+(n-1).d$
$d=6,n=?,a=6$ and $a _{n}=396$

Hence
$396=6+(n-1).6$
Or 
$66=n$.

Hence
$n(A\cap B)=66$.

Now 
$n(A \cup B)=n(A)+n(B)-n(A\cap B)$
$=200+250-66$
$=384$.

In a group of children $35$ play football out of which $20$ play football only, $22$ play hockey; $25$ play cricket out of which $11$ play cricket only. Out of these $7$ play cricket and football but not hockey, $3$ play football and hockey but not cricket and $12$ play football and cricket both. How many play all three games?

  1. $5$

  2. $2$

  3. $12$

  4. $60$


Correct Option: A
Explanation:

Let $F,H$ and $C$ denote the no. of children who play Football, Hockey and Cricket respectively.
Given $n(F)=35,n(H)=22,n(C)=25$ and $n(F\cap C\cap H^{\prime})=7,n(F\cap H\cap C^{\prime})=3,n(F\cap C)=12$
but $n(F\cap C\cap H^{\prime})=n(F\cap C)-n(F\cap C\cap H)$
$\Rightarrow 7=12-n(F\cap C\cap H)$
$\Rightarrow n(F\cap C\cap H)=5$
$\therefore$ No of children who play all three games is $5$
Hence, option A

- Hide questions