0

Geometric and harmonic mean - class-XI

Description: geometric and harmonic mean
Number of Questions: 21
Created by:
Tags: business maths measures of central tendency statistics maths descriptive statistics and probability
Attempted 0/21 Correct 0 Score 0

The harmonic mean of $\dfrac { a }{ 1-ab } and \dfrac { a }{ 1+ab }$ is:

  1. $a$

  2. $\dfrac { a }{ 1-{ a }^{ 2 }b^{ 2 } }$

  3. $\dfrac { 1 }{ 1-{ a }^{ 2 }b^{ 2 } }$

  4. $\dfrac { a }{ 1+{ a }^{ 2 }b^{ 2 } }$


Correct Option: A
Explanation:

Here, $n=2$

$x _1=\dfrac{a}{1-ab}$ and $x _2=\dfrac{a}{1+ab}$
Then, $\dfrac{1}{x _1}=\dfrac{1-ab}{a}$ and $\dfrac{1}{x _2}=\dfrac{1+ab}{a}$

$\Rightarrow$  Harmonic mean $=\dfrac{n}{\dfrac{1}{x _1}+\dfrac{1}{x _2}}$

                                  $=\dfrac{2}{\dfrac{1-ab}{a}+\dfrac{1+ab}{a}}$

                                  $=\dfrac{2a}{2}$

                                  $=a$

The relation among AM, GM and HM is

  1. $AM\times GM=HM$

  2. $HM=\sqrt{AM\times GM}$

  3. $GM^2=AM\times HM$

  4. $AM^2=GM\times HM$


Correct Option: C
Explanation:

For any given numbers, their means, Arithmetic mean (AM), Geometric mean, (GM) and Harmonic mean are related by the relation
$ GM^2 = AM \times HM $

$\bar{x} = A + \dfrac{\sum fd}{N}$ is the formula of

  1. Median

  2. Mode

  3. Arithmetic mean

  4. Mean deviation


Correct Option: C
Explanation:

$\text{Arithmetic mean for ungrouped data:-}$ Arithmetic mean for ungrouped data is the average of the values in the data set. i.e., sum of the values in the data set divided by the total number of values in the data set.

for example, if the data set is $x _1,x _2,x _3,...,x _n$ then the mean is $\bar x =\dfrac{x _1+x _2+x _3+...+x _n}n=\dfrac{\sum x _i}n$

$\text{Arithmetic mean for grouped data:-}$ If $x _1,x _2,x _3,...,x _n$ are the values with corresponding frequencies $f _1,f _2,f _3,...,f _n$ then the arithmetic mean is $\bar x =\dfrac{f _1x _1+f _2x _2+f _3x _3+...+f _nx _n}{f _1+f _2+...+f _n}=\dfrac{\sum f _ix _i}{\sum f _i}$

Alternate formula for arthmetic mean of grouped data is $\bar x =A+\dfrac{\sum f _id _i}{\sum f _i}=A+\dfrac{\sum f _id _i}N$

where $d _i=(x _i-A)$,
$N=\sum f _i$ and
A is assumed mean (usually middle term)


Class-intervals 0-10 10-20 20-30 30-40 40-50
Frequency   12    11    14    10    13

Find the arithmetic mean for the given grouped frequency distribution.

  1. $\displaystyle 15\frac{1}{6}$

  2. $\displaystyle 25\frac{1}{6}$

  3. $\displaystyle 35\frac{1}{6}$

  4. $\displaystyle 45\frac{1}{6}$


Correct Option: B
Explanation:

Consider the following table, to calculate mean:

$ci$  $f _i$ $x _i$  $f _ix _i$
 0-10  12  5  60
 10-20  11 15  165
 20-30  14  25  350
 30-40  10  35  350
 40-50  13  45  585
 $N=\Sigma f _i=60$          
 $\Sigma f _ix _i=1510$

Mean $\overline x=\dfrac {\Sigma f _ix _i}{N}$
$\therefore \overline x=\dfrac{1510}{60}=25\dfrac16$
Hence, option $B$ is correct.

Below is given the distribution of money (in Rs.) collected by students for flood relief fund. Find mean of money (in Rs.) collected by a student

Money (in Rs.) 0 - 10 10 - 20 20 - 30 30 - 40 40 - 50
No. of students   5    7    5    2    6
  1. Rs.$ 22.80$

  2. Rs.$ 23.80$

  3. Rs. $24.80$

  4. Rs.$ 25.80$


Correct Option: B
Explanation:
Consider the following table, to calculate mean:
|  $ci$   |  $f _i$ |    $x _i$ |  $f _ix _i$ | | --- | --- | --- | --- | |  $0-10$    |   5 |  5 |  25 | |  $10-20$  |   7 | 15 |  105 | |  $20-30$  |  5 |  25 |  125 | |  $30-40$ |  2 |  35 |  70 | |  $40-50$ |  6 |  45 |  270  |
 $N=\Sigma f _i=25$          
 $\Sigma f _ix _i=595$

Mean $\overline x=\dfrac {\Sigma f _ix _i}{N}$
$\therefore \overline x=\dfrac{595}{25}=23.80$
Hence, option $B$ is correct.

The measurements (in mm) of the diameters of the head of screws are given below :
Calculate mean diameter of head of a screw.

Diameter (in mm) 33 - 35 36 - 38 39 - 41 42 - 44 45 - 47
No. of screw   10   19   23   21   27
  1. $38.08$ mm

  2. $40.08$ mm

  3. $41.08$ mm

  4. $45.08 $ mm


Correct Option: C
Explanation:

Consider the following table, to calculate mean:

 $ci$  $f _i$  $x _i$  $f _ix _i$
 32.5-35.5  10  34  340
 35.5-38.5  19  37  703
 38.5-41.5  23  40  920
41.5-44.5  21  43  903
44.5-47.5  27  46  1242
 $N=\Sigma f _i=100$          
 $\Sigma f _ix _i=4108$

Mean $\overline x=\dfrac {\Sigma f _ix _i}{N}$
$\therefore \overline x=\dfrac{4108}{100}=41.08$
Mean diameter of head of a screw is $41.08$mm
Hence, option $C$ is correct.

Find the mean marks from the following data:

Marks Number of students
Below 10 5
Below 20 9
Below 30 17
Below 40 29
Below 50 45
Below 60 60
Below 70 70
Below 80 78
Below 90 83
Below 100 85
  1. $37.12$ marks

  2. $41.5$ marks

  3. $44.26$ marks

  4. $48.4$ marks


Correct Option: D
Explanation:

Answer:- Taking continuous class interval with width $= 10$

$ \therefore $ For $"90-100" = Below\ 100 - Below\ 90 = 85 - 83 = 2$
$ \therefore $ For $"80-90" = Below\ 90 - Below\ 80 = 83 - 78 = 5$
Similarly for other classes also.
Thus our frequency distribution table is 

 Marks Students$ f _i $  $ x _i = \cfrac{\text{lower limit + upper limit}}{2} $  $ f _ix _i $ 
0-10  5  5  25
10-20  4  15  60
20-30 8  25 200
30-40  12   35 420 
 40-50 16   45 720 
50-60 15   55 825 
60-70 10   65 650 
70-80  8  75  600
80-90   85  425
90-100   95  190
  $ \Sigma f _i = 85 $    $ \Sigma f _ix _i = 4115 $ 

$ \therefore $ Mean $= 48.4$

A survey was conducted by a group of students as a part of their environment awareness programme, in which they collected the following data regarding the number of plants in 20 houses in a locality. Find the mean number of plants per house.

Number of Plants 0-2 2-4 4-6 6-8 8-10 10-12 12-14
Number of houses 1 2 1 5 6 2 3

Which method did you use for finding the mean, and why?

  1. $8.2$ plants

  2. $6.5$ plants

  3. $5.7$ plants

  4. None of these


Correct Option: D
Explanation:

Answer: Using direct method to calculate mean :


No. of plants   No. of houses   $x _i$ $f _i.x _i$ 
0-2   1
 2-4
4-6   1
6-8  35 
8-10  54 
10-12  11  22 
12-14  13  39 
  $\Sigma f _i=20$    $\Sigma f _i.x _i=162$ 

Mean=$\cfrac{\Sigma f _i.x _i}{\Sigma f _i}=\cfrac{162}{20}=8.1\;plants$

We used direct method for finding the mean as the width of the class is very small and also the frequency for each class have very small values. Thus, it will be easy to calculate.

Record of no. of days of medical leave taken by $ 30$ employees within a year is given below.

No. of days 0 - 10 10 - 20 20 - 30 30 - 40 40 - 50
No. of employees 5 7 11 4 3

Find mean number of days of medical leave taken by an employee in a year.

  1. $29.67$ days

  2. $25.67$ days

  3. $22.67$ days

  4. $20.6$ days


Correct Option: C
Explanation:

Consider the following table, to calculate mean:

 $ci$  $f _i$  $x _i$ $f _ix _i$ 
 0-10  5  5  25
 10-20  7  15  105
 20-30  11  25  275
 30-40  4  35  140
 40-50  3  45  135
$N=\Sigma f _i=30$          
 $\Sigma f _ix _i=680$

Mean $\overline x=\dfrac {\Sigma f _ix _i}{N}$
$\therefore \overline x=\dfrac{680}{30}=22.67$
Mean number of days of medical leave taken by an employee in a year is $22.67$ days.
Hence, option $C$ is correct.

To find the concentration of $SO _2$ in the air (in parts, per

million), the data was collected for 30 localities, in a certain city

and is presented below:

Concentration of $SO _2$ (in ppm) Frequency
0.00-0.04 4
0.04-0.08 9
0.08-0.12 9
0.12-0.16 2
0.16-0.20 4
0.20-0.24 2

Find the mean concentrations of $SO _2$ in the air.

  1. $0.099$ ppm

  2. $0.09$ ppm

  3. $0.99$ ppm

  4. $0.0909$ ppm


Correct Option: A
Explanation:

Consider the following table, to calculate mean:

$ci$ $f _i$  $x _i$  $f _ix _i$ 
$0.00-0.04$ $4$  $0.02$  $0.08$ 
$0.04-0.08$  $9$  $0.06$  $0.54$ 
$0.08-0.12$  $9$  $0.10$  $0.90$ 
$0.12-0.16$  $2$  $0.14$  $0.28$ 
$0.16-020$  $4$  $0.18$  $0.72$ 
$0.20-0.24$  $2$  $0.22$  $0.44$ 
$N=\Sigma f _i=30$          
 $\Sigma f _ix _i=2.96$

Mean $\overline x=\dfrac {\Sigma f _ix _i}{N}$
$\therefore \overline x=\dfrac{2.96}{30}=0.0986667 \approx 0.099$
mean concentration of $SO _2$ in air is $0.099ppm$
Hence, option $A$ is correct.

The following table gives the per day income of 50 pupils. Find the arithmetic mean of their per day income.

Income/day (Rs) 70-74 74-78 78-82 82-86 86-90
No. of people    8    10      11    17    4


  1. $75.92$

  2. $79.92$

  3. $80.92$

  4. None of these


Correct Option: B
Explanation:

Consider the following table, to calculate mean:

 $ci$  $f _i$  $x _i$  $f _ix _i$
70-74  8  72  576
 74-78  10  76  760
 78-82  11  80  880
 82-86  17  84  1428
 86-90  4  88  352
 $N=\Sigma f _i=50$          
 $\Sigma f _ix _i=3996$

Mean $\overline x=\dfrac {\Sigma f _ix _i}{N}$
$\therefore \overline x=\dfrac{3996}{50}=79.92$

Hence, option $B$ is correct.

Compute the missing frequencies $'f _1'$ and $'f _2'$ in the following data, if the mean is $166\frac {9}{26}$ and the sum of the observation is 52.

Classes Frequency
140-150 5
150-160 $f _1$
160-170 20
170-180 $f _2$
180-190 6
190-200 2
Total 52
  1. $f _1=7, f _2=3$

  2. $f _1=10, f _2=6$

  3. $f _1=9, f _2=8$

  4. None of these


Correct Option: D
Explanation:

Given:- $\Sigma f = 52 $

 classes frequency$ (f _i) $  $ x _i = \cfrac{\text{lower limit + upper limit}}{2} $  $ x _i f _i $ 
140-150   145  725
150-160  $ f _1 $  155  $ 155f _1 $ 
 160-170 20  165  3300 
170-180  $ f _2 $  175  $175f _2$ 
180-190  185  1110 
190-200  2 195  390 
  $ \Sigma f _i = 52 $    $ \Sigma x _i f _i = 5525 + 155f _1 + 175f _2 $ 

Also $ \Sigma f _i = 33  f _1 + f _2 = 52 $

$ \Rightarrow f _1 + f _2 = 19\longrightarrow eq.(i) $
Now Mean = $ \cfrac{\Sigma x _i f _i}{\Sigma f _i} = \cfrac{5525 + 155f _1 + 175f _2}{52} $ 
Given:- Mean = $ \cfrac{4325}{26} $
$ \Rightarrow \cfrac { 5525+155f _{ 1 }+175f _{ 2 } }{ 52 } =\cfrac { 4325 }{ 26 } $
$ \Rightarrow 5525 + 155f _1 + 175f _2 = 8650 $
$ \Rightarrow 155f _1 + 175f _2 = 8650 - 5525 = 3125$
$ 31f _1 + 35f _2 = 625 \longrightarrow eq.(ii) $
from eq. (i) $ & $ (ii), we get
$ f _2 = 9 \Rightarrow f _1 = 10 $
D) None of these

In a frequency dist. if $\displaystyle d _{i}$ is deviation of variates from a number e and mean = $\displaystyle e+\frac{\Sigma f _{i}d _{i}}{\Sigma f _{i}}$, then e is

  1. Lower limit

  2. Assumed mean

  3. Number of observation

  4. Class interval


Correct Option: B
Explanation:

Formula of finding Mean using step deviation method is

mean = $\displaystyle e+\frac{\Sigma f _{i}d _{i}}{\Sigma f _{i}}$
where,
$e=$Assumed Mean
$\Sigma f _id _i=$Sum of all $frequency(f _i)\times deviation(d _i)$
$\Sigma f _i=$ Sum of all frequencies
Hence the correct answer is assumed mean.

If the mean of four observations is $20$ and when a constant  is added to each observation the mean becomes $22$ The value of $c$ is?

  1. $-2$

  2. $2$

  3. $4$

  4. $6$


Correct Option: B
Explanation:

$\displaystyle\text{Let } x _1,x _2,x _3,x _4\text{ be four observations.}$
$\displaystyle\text{According to question}$
$\displaystyle \frac{ x _1+x _2+x _3+x _4}{4}=20$
$\Rightarrow \displaystyle { x _1+x _2+x _3+x _4}=80$
$\displaystyle\text{After adding 'c' to each observation the new A.M becomes 22.}$
$\Rightarrow \displaystyle \frac{ (x _1+c)+(x _2+c)+(x _3+c)+(x _4+c)}{4}=22$
$\Rightarrow \displaystyle  (x _1+x _2+x _3+x _4)+4c=88$
$\Rightarrow \displaystyle  80+4c=88$
$\Rightarrow \displaystyle  4c=8$
$\Rightarrow \displaystyle  c=2$
Options B is correct.

HM of 3 and 5 is

  1. $\displaystyle\dfrac{15}{4}$

  2. $\displaystyle\dfrac{15}{8}$

  3. $\displaystyle\dfrac{3}{4}$

  4. $\displaystyle\dfrac{5}{8}$


Correct Option: A
Explanation:

Harmonic mean of two numbers $ a $ and $ b = \dfrac {2ab}{a+b} $

So, harmonic mean of $ 3\ and\  5 $ is $ \dfrac {2 \times 3 \times 5}{3+5} = \dfrac {15}{4} $

GM of 4 and 64 is

  1. 32

  2. 8

  3. 16

  4. 24


Correct Option: C
Explanation:

Geometric mean or GM of two numbers $ a $ and $ b $ is $ \sqrt {ab} $
So, GM of $ 4\  and\  64 $ is $ \sqrt {4 \times 64} = 2 \times 8 = 16 $

The harmonic mean of 20 and 30 is

  1. 25

  2. 28

  3. 26

  4. 24


Correct Option: D
Explanation:

Harmonic mean of two numbers $ a $ and $ b = \dfrac {2ab}{a+b} $

So, harmonic mean of $ 20\  and\  30 $ is $ \dfrac {2 \times 20 \times 30}{20+30} = 24 $

Find the sum of 5 geometric means between $\displaystyle\frac{1}{3}$ and 243, by taking common ratio positive.

  1. 121

  2. 126

  3. 81

  4. 111


Correct Option: A
Explanation:

Given that, there are $5$geometric means between the two numbers $\dfrac{1}{3}$and $243$ , we have to find $7=\left( 5+2 \right)$

terms in G.P. of which $\dfrac{1}{3}$ is the first, and$243$ the seventh. Let r be the common ratio;

then $243$  = the seventh term =$\left( \dfrac{1}{3} \right){{r}^{\left( 7-1 \right)}}=\dfrac{1}{3}.{{r}^{6}}$.

 

Therefore,${{r}^{6}}=3.x.243={{3.3.3}^{4}}={{3}^{6}}$;

whence $r=6$

and the series is$\dfrac{1}{3},1,3,9,27,81,243$

(using the standard form a, ar, ar², ar³ …… of a G.P. ).

 

Now, the geometric mean between two given quantities$a,b=\sqrt{ab}$

 

Therefore, the required geometric means are,

$ \sqrt{\dfrac{1}{3}.x.3},\sqrt{1.x.9},\sqrt{3.x.27},\sqrt{9.x.82},\sqrt{27.x.243} $$

$ =1,3,9,27,81 $$

 

Therefore, the sum of the $5$  geometric means is

$1+3+9+27+81=121$

 

Hence, this is the answer.

 

The geometric mean of $10$ observations on a certain variable was calculated as $16.2$. It was later discovered that one of the observations was wrongly recorded as $12.9$; infact it was $21.9$. The correct geometric mean is:

  1. $\left (\dfrac {(16.2)^{9}\times 21.9}{21.9}\right )^{1/10}$

  2. $\left (\dfrac {(16.2)^{10}\times 21.9}{21.9}\right )^{1/10}$

  3. $\left (\dfrac {(16.2)^{10}\times 21.9}{12.9}\right )^{1/10}$

  4. $\left (\dfrac {(16.2)^{11}\times 21.9}{21.9}\right )^{1/11}$


Correct Option: A
Explanation:

Geometric mean of $n$ numbers $=(\prod _{i=1}^{n} x _{i})^{1/n}$

Here, $(\prod _{i=1}^{10} x _{i})^{1/10}=16.2$
$\Rightarrow (\prod _{i=1}^{10} x _{i})=(16.2)^{10}$
Now suppose $x _{10}$ was wrongly recorded, so we rewrite above relation as $(\prod _{i=1}^{9} x _{i})\times x _{10}=(16.2)^{10}$
$\Rightarrow (\prod _{i=1}^{9} x _{i})=\dfrac{(16.2)^{10}}{x _{10}}$
Now, the correct value is $21.9$, so multiply both sides by $21.9$ and also put value of $x _{10}=12.9$ in above equation
$(\prod _{i=1}^{9} x _{i})\times 21.9=\dfrac{(16.2)^{10}}{12.9}\times 21.9$
$=$ Correct Geometric mean=$((\prod _{i=1}^{9} x _{i})\times 21.9)^{1/10}$
$=\left(\dfrac{(16.2)^{10}}{12.9}\times 21.9\right)^{1/10}$
$=\left(\dfrac{(16.2)^{10}\times 21.9}{12.9}\right)^{1/10}$
Hence, $(C)$ is correct.

The harmonic mean of the roots of equation $(5+\sqrt {2})x^{2}-(4+\sqrt {5})x+8+2\sqrt {5}=0$ is

  1. $2$

  2. $4$

  3. $6$

  4. $none\ of\ these$


Correct Option: B
Explanation:

$\begin{array}{l} \left( { 5+\sqrt { 2 }  } \right) { x^{ 2 } }-\left( { 4+\sqrt { 5 }  } \right) x+8+2\sqrt { 5 } =0 \ a=5+\sqrt { 2 }  \ b=-\left( { 4+\sqrt { 5 }  } \right)  \ c=8+2\sqrt { 5 }  \ Harmonic\, \, mean\, \, of\, \, \lambda ,\beta  \ =\frac { { 2\lambda \beta  } }{ { \lambda +\beta  } }  \ \lambda \beta =\frac { c }{ a } =\frac { { 8+2\sqrt { 5 }  } }{ { 5+\sqrt { 2 }  } }  \ \lambda +\beta =\frac { { -b } }{ a } =\frac { { 4+\sqrt { 5 }  } }{ { 5+\sqrt { 2 }  } }  \ Harmonic\, \, mean=\,  \ \frac { { 2\frac { { \left( { 8+2\sqrt { 5 }  } \right)  } }{ { 5\sqrt { 2 }  } }  } }{ { \frac { { 4+\sqrt { 5 }  } }{ { 5+\sqrt { 2 }  } }  } }  \ =\frac { { 2\left( { 8+2\sqrt { 5 }  } \right)  } }{ { 4+\sqrt { 5 }  } }  \ =4\, \, \,  \end{array}$

The mean of the following frequency distribution is 62.8 and the sum of all the frequencies is 50. Compute the missing frequency $\displaystyle f _{1}$ and $\displaystyle f _{2}$.

Class 0-20 20-40 40-60 60-80 80-100 100-120
Frequency 5 $\displaystyle f _{1}$ 10 $\displaystyle f _{2}$ 7 8
  1. $5, 8$

  2. $6, 12$

  3. $8, 11$

  4. $8, 12$


Correct Option: D
Explanation:
Class       Frequency(f)  ClassMark (x)         fx
0-20         5      10         50
20-40     ${f} _{1} $      30       $ 30{f} _{1} $
40-60         10       50          500
60-80      ${f} _{2} $        70        $ 70{f} _{2} $
80-100          7         90          630
100-120           8         110           880
Total $30 + {f} _{1} +{f} _{2} $   $ 2060  + 30{f} _{1}+70{f} _{2} $

Given $ 30 + {f} _{1} +{f} _{2} = 50 $
$ => {f} _{1} +{f} _{2} = 20 $   -- (1)

Given, Mean $ = \cfrac { \sum { fx }  }{ \sum { f }} =62.8 $
$ => \cfrac { 2060  + 30{f} _{1}+70{f} _{2}}{30 + {f} _{1} +{f} _{2}} = 62.8 $

$ =>  2060  + 30{f} _{1}+70{f} _{2} = 1884 + 62.8{f} _{1} + 62.8{f} _{2} $ 

$ 32.8{f} _{1} - 7.2{f} _{2} =176 $

=> $ 8.2{f} _{1} - 1.8{f} _{2} = 44 $

=> $ 4.1{f} _{1} - 0.9{f} _{2} = 22 $ -- (2)

Solving both equations 1, 2, we get
$ {f} _{1} = 8, {f} _{2} = 12 $

- Hide questions